
Основные списки литературы:
http://pastebin.com/raw/4iMjfWAf - classic
http://pastebin.com/raw/4FngRj6n - dxdy
Архив тредов (там же остальные списки литературы и полезные ссылки):
https://pastebin.com/raw/qhs0WNbY
>А может она так же запузыриться, если её уебать по животу с ноги.
А если запырка - это космический объект по объёму на уровне планеты?
Ну и что? Может быть другой фактор, отчего она пузыриться может. В черную дыру влетит и запузырится.
Если известно что да, только отравление пузырение вызывает и болше ничего, то все 3 варианта подходят получается.
Ебать, тебе пиздец, когда тру-матанщики увидят твой пост.
>>1434 (Del)
Эх, щегол. Твоё счастье, что ты не знаешь как оно расшифровывается
>Если известно что да
А если известно только то что указано, то зачем строить ещё предположения?
Да ты охуел, пацан
Если в воду добавить серной кислоты, вода нагреется. Добавление серной кислоты это единственная возможная причина нагревания воды? А теперь просто съеби.
>Если в воду добавить серной кислоты, вода нагреется.
О, стандартная логическая ошибка смены объекта обсуждения. Тупица, там речь шла о воде? И ты ещё, пиздаглазая мразь, будешь мне что-то за логику рассказывать? Ты бы сам отсюда съебал быстро, мат-петух.
>если кто-то из вас в это неспособен
Если ты посторонний уебан, которого не спрашивали, влезаешь в обсуждение, то идёшь на хуй и заваливаешь ебало, мат-петух.
во-первых, это не обсуждение
во-вторых, нахуй следует идти тебе, порватка, ты здесь на доске посторонний
>Если ты посторонний уебан, которого не спрашивали, влезаешь в обсуждение, то идёшь на хуй
>Туши свой синдром вахтёра
у вас тут двойные стандарты отклеились
>у вас тут двойные стандарты отклеились
>во-вторых, нахуй следует идти тебе, порватка, ты здесь на доске посторонний
Не тебе об этом сообщать, полудурок.
доска посвящена математике, а ты занимаешься исключительно бессодержательным срачем
причём в заглавном треде, посвящённом вопросам начинающих
само собой, тебе здесь не место
Вопрос изначально касался логического высказывания. Пока ты, мат-петух, не стал выставлять своё ЧСВ и включать вахтёра, всё было в рамках обсуждения. Само собой тебе следует завалить ебало.
>Вопрос изначально касался логического высказывания
вот я и высказался насчёт этого вопроса: переводи высказывание в логику первого порядка, и вопрос решён
но ты быстро перешёл на срач, что ясно указывает на тот факт, что никакой математический вопрос тебе не интересен и ты не намерен его обсуждать. твой ответ на моё замечание также подтверждает это. я вежливо рекомендую тебе зашить жопу и отдохнуть от интернетов года 3-4. можно посвятить их образованию, чтобы не быть дебилом
Результат аффинных преобразований x и y обычно обозначают x' и y' (икс/игрек штрих). Как этот штрих звучит в английской терминологии x prime? Всех чмоки в этом чатике.
Короче да, напишу нормально - мысль всего лишь подтверждает, больше ничего. И что? Такая же штука. Значит и документ документом не проверяют к примеру.
>но ты быстро перешёл на срач, что ясно указывает на тот факт, что никакой математический вопрос тебе не интерес
Когда мы касаемся логики, то она не замыкается только на логике предикатов, тупой идиот, что подтверждается парадоксами в речевых оборотах, а потому, вполне возможно, находясь в контексте, я могу давать обоснование и вне неё. Вахтёрская попытка увязать в удобненьких границах не прокатит.
>я вежливо рекомендую тебе зашить жопу и отдохнуть от интернетов года 3-4. можно посвятить их образованию, чтобы не быть дебилом
Вежливо тебе порекомендую пойти на хуй. Снова, ведь ты, по-умолчанию, являешься тупым, раз не понял с первого раза
Суп, /math/!
Как всякий уважающий себя гумусонитарий после журфака (по специальности которого один хер не работаешь) решил сесть и разобраться в математике. Есть год времени 2-3 часа по вечерам, профильный ЕГЭ по матеше сданный лет 9 назад на 90 баллов.
Цель: подготовитсья к нормальному курсу от The Open University по терверу/статистике на undergraduate сертификат.
Проблема: я нихуя не понимаю математику. В школе я тупо задрочил ЕГЭ (и даже последние задачи) по принципу робота (видишь паттерн - хуярь алгоритм). В вузе ходил в кружок дата сайенса и корпусной лингвистики, там это прикладывание формул продолжилось.
Предполагаемое решение: освоить программу "Матшкольник", и лекции НМУ по общей алгебре и анализу одной переменной, а также терверу. И от этого уже плясать на статистику. Параллельно с чтением литературы найденной в чат жопате и решением задач, читаю How To Prove It за авторством Daniel J. Velleman.
Анон, подскажи проверенной русской и английской литературы по:
1. Элементарной теории чисел (делимость, кольца вычетов, смежные простые, теоремы Эйлера и Бернулли).
2. Полиномам.
Наверное, утверждение "что-то ощущается" Вы посчитаете менее притязательным и необоснованным. Разве что вопрос вызовет значение слова "ощущается".
То же самое и с изначальным вопросом: откуда мы знаем, что существуем? Вопрос к слову "мы".
>>1469
Понимание математики и намечаемые Вами темы очень удалены друг от друга. Начать, конечно, следует с понимания.
>>1469
Сначала критика, потом совет.
>Предполагаемое решение: освоить программу "Матшкольник", и лекции НМУ по общей алгебре и анализу одной переменной, а также терверу. И от этого уже плясать на статистику. Параллельно с чтением литературы найденной в чат жопате и решением задач, читаю How To Prove It за авторством Daniel J. Velleman.
Заблуждаетесь. Все это либо не направлено общее на понимание математики, либо только увеличит прикладывание формул.
Советую посмотреть серию книг «Энциклопедия элементарной математики». Особенно продвинутого материала в них не будет, они концентрируются на привитии понимания.

любой уважающий себя начинающий обязан освоить линейную алгебру и анализ одной переменной. конкертных книг я не подскажу (их миллион и это отдельная дискуссия), но это обязательные предметы. и на самом деле единственно нужные, если ты не намерен погружаться глубоко
после них изучение статистики и тервера не составит никакого труда
Этот шарит.
Интегралы и дифференциалы 100% нужны для инженерных направлений
Го делить на ноль!
Опять на связь выходишь?
Начинай читать Винберга, там первые главые как раз про это. Легко не будет, в начале точно.
А ты тоже любишь пучкать?
если люди не могут согласиться на справедливости какой-то логической связки, то это наилучший способ разрешить их спор
а у меня мат. логика в университете была (как и у всех, кто учился в университете)
>наилучший способ
Наилучший способ - это установить положения в споре, мат-петух. А пока таковых не было, каждый волен полагать наиболее разумное. Но вот только фантасты любят придумывать неуказанное, а потому и неразумное. Запомнил?
Мы никогда не знаем, может наш мозг взломали. это если без полиции которая нас защищает и такого не допустит, описания обычной мирной жизни и прочих пап-мам.
Допустим, вы захотели поставить хак защиту (достаточную) на мозг, чтобы не было фейка у вас в башке, и вам таковая доступна (супер элемент 300 на сайте защита ру, вам бесплатно потому что вы студент универа электроники энного города). Но вы до этого еще родились задолго, и раньше еще некие более быстро развивающиеся люди поставили вам умный бэкдор с контролем и прочими плюшками, и вам никогда не поставить эту крутую штуку, хоть и вам будет казаться что поставили.
На самом деле это может происходить с вами сейчас. И вы не можете это проверить, нечем, там фейк один в этой ситуации.
Как Билл Гейтс тогда сможет может забрать 100$, которые он якобы выиграл в споре на доказательство что он существует, где он привел слова Декарта "я мыслю-я существую", то есть проверять что он существует ему нечем- там фейк всегда будет.
Вы не представляете себе как математика прочистила мои мозги в школе, поэтому и пишу, вопрос-то не по науке прям какой. Имею право, хоть и не по математике, но по логике-может сильнейшей составляющей математики.
>то это наилучший способ
Зачем тогда свой ёбаный догмат пишешь по нашему спорному вопросу, блядота петушиная?

Братан, тебе что тяжело? Тут логика лучше, ответ на вопрос-интересует. Что мне делать? Зря на сайт пришел? Странно ты добра сайту желаешь! Отпугнешь же!
как же тебя корёжит
То местный нематиматикопетух, у него все что не пожоже на хуй негра не является математикой, не обращай на него внимание, или шли на хуй
Да все ок, спасибо. Парень/девушка просто слишком старательно чистит треды.
>Если шизику засунуть хуй в жопу, шизик завизжит.
А если засунуть тебе, ты будешь радоваться и смеяться?
мем "не математика" здесь был, когда ты ещё под стол пешком ходил и про двачи не слыхивал. забавно наблюдать, как тебя от него триггерит теперь, залётыш
Ты не ввёл первоначальных определений, мат-петух.
Ввожу определение. Мат-петухом нарекается любой, кто подпадает под положение фанатика, строго придерживающего какой-то системы идей, не подвергая их сомнению, в рамках нашего контекста.
Теперь на понятном тебе языке
{\displaystyle \forall }x : МП(x).
>Этот шизик
Не доказано.
>уже визжит.
Не доказано.
>Если шизику засунуть хуй в жопу, шизик завизжит.
Дополняю. Мат-петух, по-умолчанию, шизик, исходя из строгой приверженности своим идеям, но его особая разновидность обязывает от подобного получать удовольствие, что подтверждается мыслями о данном процессе вообще.
Думайте.
>полное неумение в элементарный TeX
я всё понимаю, но надо же так палиться
если тебе нечего сказать, зачем так усиленно пытаться из себя что-то выжать?
уж лучше с адресацией, чем с ТеХом, пытаясь изобразить из себя знающего человека, лол.
это уже полный зашквар
>пытаясь изобразить из себя знающего
Кто тебе это сообщил, мат-петух? Опять расщепление в башке?
Но меня радует что ты принял свою пидорскую и сектантскую сущность.
А зачем пытаться что-то насрать в ТеХе, если ты этого никогда не делал? чтобы что?
на вопрос можешь не отвечать
рассмотрим куб со стороной $1$ и сферу с радиусом $r$, где $4\pi r^2 = 6$. площади поверхности этих двух фигур одинаковые, однако объёмы разные: у куба это $1$, у сферы - $4/3\pi r^3$, где $r$ выражено выше
а происходит так, потому что кривизна, но это уже сложнее объяснить
ещё один занимательный эффект, имеющий к этому отношение: при деформации куба в сферу, кратчайшие расстояния между точками поверхности будут меняться
Молодчина. Хорошо что ты не сопротивляешься своей пидарской сущности, мат-петух. Теперь можешь вытереть лицо от жёлтых пятен.
Расщепление башки довело тебя до восприятия себя в третьем лице. Ха.
Здесь утверждается что если площадь всей поверхности 108, то при изменении формы куба на другую форму, например на сплюснутый куб без изменения площади поверхности будет совсем другой объем. Как по мне это не возможно.
Ты без проблем можешь построить объект с бесконечной площадью поверхности и конечным объёмом. Самый простой пример - рог Гавриила.
>>1521
Буквально возьми кусок пластилина и поиграйся с ним, стараясь сохранять площадь поверхности и меняя объем. Или буквально построй два прямоугольных параллелепипеда с одной и той же площадью поверхности и разными объемами.
>>1524
Ты тот же идиот, у которого $2\mathbb{N}$ и $\mathbb{N}$ не равномощны? То, что у объекта с небольшим объемом может быть очень большая площадь поверхности, буквально используется на практике в реальности. Есть такая штука, активированный уголь, например, может слышал.
>Есть такая штука, активированный уголь, например, может слышал
Слышал, у него внутри маленькие пещеры, так что там все нормально с площадью.
>Буквально возьми кусок пластилина и поиграйся с ним, стараясь сохранять площадь поверхности и меняя объем
Поигрался, площадь и обьем взаимозависимы
Это физика
Это задача по математике в рамках моего курса Algebra 2.

Книга пиздит, у фигур одинаковая площадь всех плоскостей и объема, но разная форма.
Ты считать не умеешь. У куба ребро 2, площадь всех граней 6 х 2 х 2 = 24. У кирпича ребра 1, 2, 4, площадь всех граней 2 х 2 х 4 + 2 х 1 х 4 + 2 х 1 х 2 = 28.

Представь, как заполняются почтовые конверты. Изначально они довольно плоские.
всем привет!
Тундра или Столичная?
если ты хочешь учиться именно математике, то на приличный заработок не стоит надеяться, уж точно во время обучения. цель будет другая - поступление в аспирантуру или на постдок за границу. совмещать работу и учёбу без ущерба последней едва ли будет возможно (точно не будет). если хорошо учиться и суметь быстро скооперироваться с научником, можно попасть к нему на грант; это не будут совсем небольшие деньги, но что-то
если что, я не учился в топовых вузах, но думаю, нигде не ошибся
не, работа - это не главное. скорее просто показатель нагрузки в вузе. поступать на математику хочу именно из-за крутого образования, а не из-за профессии или научной карьеры
> поэтому математика слабая относительно крутых московских школ. готовлюсь к олимпиадам, но особо не рассчитываю, т.к. не ботал с 3 лет.
Так ботай, хули сидишь? Даже если бви на мкн не выбьешь по олимпиаде (а туда вроде почти что только всеросов набирают), то все равно есть шанс получить бви хоть куда то в качестве подстраховки или сотку по профилю. Тоже хорошо
> расскажите пж выпускники/студенты упомянутых мест о том как проходит обучение, насколько сложно учиться и возможно ли совмещать учебу со стажировкой или работой (на последних курсах, очев не 1-2)
Сложно. У нас люди понимали, что попали не туда уже на первой недели, некотоыре на второй отчислялись уже. Если к концу года осталась половина студентов, это норм. Если на первых курсах совмещать крайне не рекомендуется, то ближе к последним ровно наоборот. Ты просто без каких то активностей выходящих за простое прослушивание лекций диплом не получишь. У тебя диплом должен быть посвящен какой то рабочей хуйне, а для этого, очевидно, нужно работать, либо какой то научной дрочи под руководством какого то крутого чела в какой нибудь лабе. Сам понимаешь, что второе гораздо сложнее и реже выходит.
про слабую программу я имел в виду что нас не задрачивают на олимпиады ну и математика интересна 4-5 людям из класса, поэтому глубоко не копают на уроках и приходится самому этим заниматься. просто вопрос был скорее про то реально ли учиться на математике людям, которые сунц не оканчивали и всерос не брали. понятно 100500 примеров будет где чел из церковно-приходской школы мехмат оканчивал.
>просто вопрос был скорее про то реально ли учиться на математике людям, которые сунц не оканчивали и всерос не брали
реально, хотя поначалу будет трудновато
>совмещать учебу
Я реально не понимаю как нормиблядям это удается. Вот допустим во вторник у тебя будет очень важный предмет на который ты ОБЯЗАН приходить (вроде физкультуры или второго иностранного языка). Т.к. добираться до любого места в Моске или любом большом городе минимум час - можно считать что весь день у тебя занят. А может таких предметов будет два или три и ты не сможешь их перенести на один день. Тогда ты скажешь РАБотодателю так и так буду приходить не пять раз в неделю а три. А он скажет конечно ололоша ведь ты самый незаменимый сотрудник. Нет. Он пошлет тебя нахуй и в пизду с порога. Это уж не говоря про сессии с которыми надо будет несколько недель крутиться как сумасшедший. А уж если к ним еще и реально готовится надо... А тебе еще и на РАБоте мозги ебут на всю катушку параллельно...
Реально конечно. Можешь взять дефолт учебники университетского уровня, например Зорич-Виндберг-КострикинМанин и попробовать их почитать. В реальности может оказаться всё ещё проще, например в МФТИ вместо КострикинМанином тебя накормят Беклемешивым, который гораздо менее абстрактен.
Чтобы олимпиады тащить не нужно их решать с 5 лет. Если на всерос или межнар метишь, то возможно это так, если не утрировать. Но есть куча других олимпиад, более простых, и которые котируют ВУЗы. Можешь их сам нагуглить, у каждого ВУЗа свой список.
Я сам не олимпиадник, всё моё олимпиадничество закончилось где-то на 3/4 ЛенМатКружков в своё время. Но мне кажется возможно к ним за полгода подготовиться, особенно если с репетом. Поищи какие-нибудь сообщества, может там лучше ответят. Я знаю только о Поступашках.
Ну и не думай, что олимпиады = математика. Многие олимпиадники, покушав настоящей, разочаровываются и съебывают в программисты.
Ещё, если ты проваливашься, то не расстраивайся. Поступай в МухГУ и пробуй перевестись. Не получится, то закончи и пробуй поступить в магу в другое место, куда ты хочешь.
Так просто бери Сканави и читай+решай. Можешь параллельно ютуб смотреть, по школьной математике видосов тонна, на любой вкус.
Например?
водка
Это ты очень хорошо сделал, что конкретизировал своб цель. Изучение школьной математики и изучение математики - это совершенно разные вещи.
По школьной математике тебе нужны школьные учебники Виленкин и др. по алгебре и началам анализа и Атанасян и др. по геометрии. Только при условии их внимательного изучения можно прибавить руководства по подготовке к ЕГЭ.
>>1618
>Так просто бери Сканави и читай+решай. Можешь параллельно ютуб смотреть, по школьной математике видосов тонна, на любой вкус.
Я считаю твой совет спорным. Теорию следует предпочитать перед практикой.
>>1035 (Del)
Полагаю, математика занимается разработкой методологии, а не построением научной картины.
>Теорию следует предпочитать перед практикой.
Зависит от цели. Если у анона цель просто сдать ЕГЭ, то реальной необходимости в дрочеве теории нет. К тому же у Сканави не только задачники, да и там вроде теория немножко есть.
Я ваще в первой половине дня думать не могу нормально, когда заканчиваются занятия и начинается сессия переворачиваю режим полностью. Ложусь спать часов в 8-9 утра, просыпаюсь около 4-5, где-то до 6 на раздуплиться, потом часов до 10 занимаюсь, потом созвон с одногруппниками, обсуждение всякого что разобрали, что прорешали, объясняем друг другу какие-то моменты, часов до 12/до часу, и потом где-то до 5-6 утра занимаюсь, кушаю и укладываюсь спать.
Дневной сон тема, если б с учебы приходила не в 6 вечера часик бы выделяла, а так я уже не встану если лягу(

это формула Тейлора
ты лучше меня, вот что
а я сидел чет нихуя не вдуплял довольно продолжительное время (ну я и не учился нигде, и не очень часто на математику смотрю, но все равно позор сука)

Я кстати вот еще подумал что чтобы дифференцировать ряд желательно чтобы он сходился равномерно. В противном случае нет гарантии что не получится херня.
Но думаю что если книга не учебник по матану - где особенно любят ебать мозг разными контр-примерами - то автор скорее всего даже сам не задумывался над подобным.
если степенной ряд сходится на каком-то интервале, то он сходится равномерно (и представляет собой ряд Тейлора функции, к которой он сходится)
это хорошо известные факты из базового курса матана
Ах вон оно как. Надо будет как-нибудь матан освежить/подтянуть.
Не бывает цели просто сдать ЕГЭ. А что дальше? Нужно шарить.
Можно было бы посоветовать литературу дополнительно, для большей подкованности. Но считаю, что начать полагается со школьных учебников.
А Я И НЕ СПЛЮ
если у тебя есть научные интересы, это значит, ты над какой-то проблемой работаешь, в которой у тебя интерес, иначе это не интересы, а праздное любопытство в лучшем случае
если ты работаешь над научной проблемой, ясно, что ты как минимум основное не забываешь
>это значит, ты над какой-то проблемой работаешь
Не значит. Ты выдумал определение "научному интересу", а речь не об этом.
Если бы я работал над интересной мне научной проблемой, то такой вопрос бы вообще не стоял.
Жаль, что ты душный дурачок, как и большинство российских технарей и мне приходится объяснять такие простые вещи.
>Он пошлет тебя нахуй и в пизду с порога
Если ты не греча с завода - всегда есть возможность договориться на 30/25/20 часов в неделю за 0,7/0,6/0,5 ставки. Работодатель - тоже человек, сычуш, а ты в унике ещё и квалификацию себе повышаешь, чтобы ему же потом больше денег приносить.
>мехмат мгу
Выебут в душу
>матфак вшаночки
Выебут в жопу
>шызтех с райгородом и шабатеевым
Выебут в мозг
Выбирай
ты не понимаешь значения слов. термин "научные интересы" обозначет область, в которой работающий учёный проводит исследования, а вовсе не "что мне интересно в науке". если ты не работающий учёный, то говорить о "научных интересах" бессмысленно. я полагаю, термин "праздное любопытство" более точно отражает верное положение вещей. можно убрать "праздное", если тебе так обидно, хотя смысл немного потеряется
пусть будет "хобби" вместо "любопытство", смысл тот же: ты либо проводишь исследования, либо нет
На физтехе сейчас есть лаборатории Цфасмана и Бондала (вторая правда без бака пока вроде, но там же на фопфе есть маткафедра другая).
Увлечение. Что за хобот? Совсем уже поехали кукухой, слоняры.

Всех чмоки в этом чатике, кто то пользуется программами для доказательства теорем (theorem prover)? Хочу научиться матдоказательствам, стоит ли рассматривать такой софт как помощник в обучении? Какая его область применения?
Я с дивана. Сам не пользовался. Только читал об этом.
>Хочу научиться матдоказательствам, стоит ли рассматривать такой софт как помощник в обучении?
Есть Xena project, цель обучение андеградов док-во с помощью Lean. Я не знаю, насколько это отличается от традиционных доказательств. Я не пробовал пройти ни один урок из этого. Соответственно я не знаю, может ли это служить заменой/помощником в обучении.
>Какая его область применения?
Теоремы становятся большими и сложными. Ни у кого нет времени каждую статью тщательно проверять, потому люди сразу пользуются результатами и строят на их основе уже свои теоремы. И часто бывает что в каких-то статьях есть ошибки, которые десятилетиями никто не замечал.
Пруверы помогают сразу проверить правильность док-ва, найти в нём ошибки.
Но есть у них минусы. Чтобы запрограммировать док-во нужно потратить огромное кол-во времени. Недавно какую-то статью Шольце проверили с помощью Lean. Чтобы перевести его человеческий текст в программу, потребовалась группа математиков и полгода времени. Потому мне кажется пока, а может и всегда, это тупиковый путь, потому что вбивать каждую лемму в прувер будет занимать. Можно было бы использовать нейросети, которые текст переводят в программу, но как проверить, что она не добавила что-то от себя, не знаю есть ли возможость.
Мне кажется, нужно отдельную специальность в вузах ввести "формализация доказательств". Типа учить как обычных математиков, но с прицелом на формализацию.
И по итогу одни будут обычным образом доказывать, а другие брать готовое и формализовать. Ясное дело, что нужно понимать, что формализуешь, но немного в меньшей степени, чем самому придумывать.
Под санкциями.
Возможно, это как-то связанно с посредственным iq.

Что знающие аноны по этому поводу думают?
Для меня индукция оч. долго как шизотрюк выглядела, пока изучал её на примерах "доказать правильность формулы" которыми школьников кормят.
Это ощущение ушло, когда столкнулся с более живыми примерами. Там она как-то "естественно" возникает и никакой попаболи при этом.
Незнание определения функции никак не мешает изучать анализ. Классических анализ появился и полностью развился и без ТМ, и определение функции тоже дали довольно поздно. Вообще в анализе ТМ нужна для двух теорем: несчетность R, существование трансцендентных чисел. Обе эти теоремы не особо и важны на начальном этапе, можно жить без них. Логика, кванторы и вовсе бесполезная хуета. Вторую, кстати, можно и без ТМ доказать.
Вообще определения нужны, чтобы конструкции с одних примеров переносить на другие. Например у функций нет "длины", а у векторов, как направл отрезков, есть. С помощью формализаций, можно перенести понятие "длина" на векторные пространства, с помощью скалярного произведения, а затем уже будет легко это определить для функций. Школьникам ничего подобного делать не придется, потому спокойно можно воспринимать функцию как зависимость пути от времени.
идея в том, что нужно доказать импликацию $P(k) \Rightarrow P(k+1)$, т.е. доказать $P(k+1)$ в предположении, что верно $P(k)$ (иначе говоря, при доказательстве этим предположением можно пользоваться). особых здесь правил нет. изредка бывает проще доказывать $P(k)$ в предположении, что верно $P(k-1)$, это то же самое
А если я кассир, то что? Я раньше думал что американцы тупые с их системой мер, но оказывается, это европейцы тупые с их десятеричной. Насильно навязанный неудообный калыч
Суть индукции, которая теряется за формализацией, скорее обратная. Тебе нужно не доказать $k+1$, исходя из $k$, а правильнее было бы сказать тебе нужно свести случай $k+1$ к случаю $k$.
Если из верности утверждения для некоего произвольного k логически следует верность утверждения для "следующего" значение, т.е. для k + 1, значит, высказывание верно для всех значений k, ну и всё по идее
Фу мясоед! Я у таких на поводу не иду. Пересядь на пирожки с капустой и можно будет поговорить.
Область применения - верификация по

Гугли пучки и когомологии.
В шапке она, конечно, есть, но отдельно её как будто бы не выделяли в треде.
И хуле? Зачем греки это придумали? Какое практическое применение этим формам? Поржать чисто что так можно? У меня аж жопа подорвалась что нигде нет конкретики по применению этой йобы, везде бесполезные нейрокалычные сайты под копирку либо заблоченые чебурнетом сайты.
"44" это 4 умножить на 4, двач сломал текст

Вот тут третье квадратное число это 3х3=9, внутри него третье треугольное число 1+2+3=6. Если 9-6=3, то остаётся прошлое (второе) по порядку треугольное число, т.е. 1+2=3. Если прибавить к квадрату длину одной стороны, т.е. 9+3=12, будет прямоугольник. В прямоугольник влезет уже 2 одинаковых треугольника, у которых сторона равна короткой стороне прямоугольника, т.е. 6+6. Как применение у этого? Зачем это придумали? Это абстрактное дрочево или это можно где-то применить?
Хотел блеснуть своими познаниями в семиотике, но потом осёкся и подумал, нахуй оно вообще кому надо. Можешь почитать вот эту статью http://ec-dejavu.ru/e/Eisenstein.html Неудивительно, что вся эта хуйня имеет отношения к кинематографу больше, чем к современной математике.
Я ничего не понял из статьи. Как это относится к тому, что греки зачем-то придумали представлять числа в виде фигур?
Да там вода какая-то и словесный понос как у панасенкова и невзорова, неинтересно. Я про квадратики спрашивал а не про культуру азии.
Ты можешь так же найти для любого действительного числа любое натуральное число, но эти множества не считаются равномощными по какой-то причине.
Выбираешь любое случайное число из действительных чисел, ставишь ему в соответствие 1, потом выбираешь любое следующее случайное действительное число, ставишь 2, и так далее до бесконечности. Важно сделать так, чтобы выбранные случайные числа не повторялись. Нетрудно видеть, что каждому действительному числу можно найти натуральное соответствие.
Ты не указал никакой функции, ебанько. В случае с чётными и натуральными задаётся функция f, такая что f(n) = 2*n, где n - это, собственно, натуральное число. Почему f является биекцией? Да потому что для f существует обратная функция t, такая что t(2n) = n. t(f(n)) = n.

>Важно сделать так, чтобы выбранные случайные числа не повторялись
вот с этим поподробнее пожалуйста :D
Смотришь их в списке, если повтор случился во время случайного выбора, то не записываешь. ЧЯДНТ?
то, что ты таким образом не перечислишь все действительные числа. иначе: при любом их перечислении найдётся такое, которое в перечисление не входит. это в точности и есть то утверждение, которое доказывается в диагональном методе Кантора (в нём явно указывается такое лишнее число для любого заданного перечисления)
Разве бесконечность не означает, что оно уже содержит это число, которое Кантор пытается вывести при помощи диагонального метода? Кантор смещает каждую цифру каждого следующего числа прибавлением на 1, но, дело в том, что оно уже должно оказаваться в списке бесконечно выписанных/натурально пронумерованных действительных чисел по определению бесконечности.
Я знаю, что такое функция, и это не обязательно линейное уравнение. Это любое правило, по которому мы задаём отношения между двумя множествами или объектами которые им принадлежат. Оно может быть логическим (как у меня), а не только через квадратное, линейное и т. д. уравнения.
А может кто нормально ответить в чем я неправ?
Кантор говорит буквально: пусть задано произвольное соответствие между натуральными и действительными числами иначе говоря,пусть имеется набор действительных чисел перенумерованных как первое, второе, и т.д. (на языке функций, речь идёт об области значений любой функции $\mathbb{N} \to \mathbb{R}$) Тогда, утверждает Кантор, существует действительное число, которого в этом наборе нет, в доказательство чего явно указывает такое число для заданного набора
Если этот набор бесконечный, то там есть все действительные числа, перенумерованные как первое, второе и т. д. Я не понимаю, почему его доказательство верно, потому что вне зависимости от того, как много единиц прибавить, ты никогда не достигнешь момента «вот, это число, которого здесь нет», потому что их бесчисленное количество, которые там есть. И не стоит обзываться, я действительно хочу понять, что здесь не так, это не должно быть так интуитивно понятно, поскольку от этого доказательства плевались даже такие люди, как Креникер и Пуанкаре.
>Если этот набор бесконечный, то там есть все действительные числа
именно это и опровергается Кантором
причём отсутствующее число указывается явно
я не обзываюсь, это другой анон (его можно понять)
Как это опровергается?? Разве бесконечность не означает, что там есть все пронумерованные действительные числа, а это значит, что невозможно найти число, которого там нет? Кантор берет число, которое там есть, и утверждает, что его там нет. Но ты не можешь взять такое число, так как там бесчисленное количество этих чисел. Оно всегда где-то повторяется по закону бесконечности.
>Разве бесконечность не означает, что там есть все пронумерованные действительные числа
там есть все пронумерованные числа, но это не означает, что там есть вообще все числа
>Кантор берет число, которое там есть
нет, он предъявляет число, которого там нет
>по закону бесконечности
мне неизвестно, что это такое
Функция - это множество упорядоченных пар. А с помощью правила это множество определяется. Можно и просто перечислением задать функцию, например, в табличном виде. Но в итоге ты никакого правила-то не задал, которое бы определяло множество, которое бы подпадало под определение функции. Просто кукарекнул, нахрукнул какую-то хуйню и всё.
> там есть все пронумерованные числа, но это не означает, что там есть вообще все числа
Не понял... Разве бесконечный случайный выбор всех чисел из R не выбирает все числа из R? Потом мы их просто нумеруем по порядку, в котором они нам выпали, вот и все.
>>1777
Ну, ты и задаешь функцию данной логической цепочкой: рандомный выбор из R, нумерация, если это число из R не находится в списке (пока что).
>Не понял... Разве бесконечный случайный выбор всех чисел из R не выбирает все числа из R?
определись аккуратно, что именно ты утверждаешь и что именно ты хочешь доказать
Я хочу понять, что R и N это неравномощные множества, но я не могу, на том основании, что, поскольку ты можешь бесконечно выбирать рандомные числа из R и нумеровать их, доказательство Кантора кажется несостоятельным. Если ты можешь выбирать их бесконечно, и, таким образом, поскольку ты это сделал, они все должны быть записаны, что мешает их пронумеровать в этом бесконечном списке?

>Ну, ты и задаешь функцию данной логической цепочкой: рандомный выбор из R, нумерация, если это число из R не находится в списке (пока что).
Поэтому я и говорю, что ты не смог выучить определение термина "функция", неосилил. Функция - это не рандомный выбор. Если у тебя f - это функция, то если f(x)=y и f(x)=z, то y=z. Никакого рандома тут не может быть.
Может быть, тебя смущает, что там у Кантора написано. Так вот, Кантор не имеет в виду какую-то конкретную функцию. У Кантора в рассуждении присутствует ПЕРЕМЕННАЯ и тип этой переменной - функция. И эта переменная связана квантором.
По логической форме у Кантора типичное доказательство от противного: Предположим, что существует какая-то функция, такая что ... . И дальше это сводится к противоречию.
равномощность $\mathbb R$ и $\mathbb N$ означает возможность построить функцию $\mathbb{N} \to \mathbb{R}$, которая является биекцией. в силу метода Кантора, любая функция $\mathbb{N} \to \mathbb{R}$ биекцией не является, поскольку не является сюръективной
выражая это на твоём (неаккуратном) языке, выбирать числа из $\mathbb R$ ты можешь сколько угодно, но выбрать все никаким образом не получится; для любого такого выбора найдётся число, которого в нём нет
>поскольку ты можешь бесконечно выбирать рандомные числа из R и нумеровать их, доказательство Кантора кажется несостоятельным
А, опять эта дегенеративная хуйня от малолетних дебилов! Никакой ситуации, что во времени происходит процесс, что кто-то или что-то сидит и выписывает пары натуральных и вещественных чисел, нет. Это ты сам эту хуйню придумал потому что не осилил несколько банальных определений.
Даже если я выбираю бесконечное количество чисел из R, там все равно остаётся бесконечно количество чисел, верно? Как так выходит? Не понимаю.
Пуанкаре тоже не осилил получается, если называл теорему Кантора психической болезнью.
если ты определил фунцию $\mathbb{N} \to \mathbb{R}$, то обязательно найдётся хотя бы одно число, которое не лежит в её области определения. справедливо и то, что таких чисел будет на самом деле бесконечно много (их несчётное число), но это уже другое утверждение
Я думаю, что они просто не понимали его теорию и теорему. И если такие светлые умы не понимали, то что от новичка в математике вы хотите чтобы он сразу понял? Я поэтому сюда и пришел, потому что тема сложная.
Я пока только выбор порядковый определил, но потом мы просто нумеруем этот выбор, когда расположили бесконечное количество чисел по порядку. Не означает ли это, что в этом списке должны быть все действительные числа?
наличие функции $\mathbb{N} \to \mathbb{R}$ означает, что у тебя каждому номеру $n \in \mathbb{N}$ сопоставлено число из $\mathbb{R}$, которое этому номеру соответствует. по Кантору, при любой нумерации найдётся число, которое ни к какому номеру не приписано
никакого
>расположили бесконечное количество чисел по порядку
нет и быть не может. у тебя либо определена функция между двумя множествами, либо нет

Ну, рандомный выбор и нумерация точки из него это и есть функция.
А что непонятного? "Число Кантора" отличается от первого "посчитанного" вещественного числа своим первым разрядом, от второго "посчитанного" вещественного числа своим вторым разрядом, от третьего "посчитанного" вещественного числа своим третьим разрядом, от энтого "посчитанного" вещественного числа своим энтым разрядом и так до бесконечности.
Имеется в виду не какой-то конкретный ряд вещественных чисел, а любой ряд вещественных чисел, и для него строится своё "число Кантора" по вот этому "диагональному алгоритму".
>мне стало скучно, закрыл книгу. Я не создан для математики?
вероятно, да
чтобы заниматься математикой, это должно быть интересно
А что если этот ряд вещественных чисел бесконечен? Ты ведь будешь просто до бесконечности считать число Кантора.
>А что если этот ряд вещественных чисел бесконечен?
С этого и начинается рассуждение. Что натуральных чисел бесконечно. Затем "начинается" "счёт" вещественных чисел:
первое вещественное число,
второе вещественное число,
третье вещественное число и так далее.
И для каждого следующего разряда каждого следующего вещественного числа этой последовательности в "числе Кантора" будет отличие.
>Ты ведь будешь просто до бесконечности считать число Кантора.
Суть в том, что ни на каком шаге это "число Кантора" не будет "посчитано". Каждый шаг оно будет отличаться потому что так задан "диагональный алгоритм". А шагов и есть бесконечное количество, то есть квантор всеобщности всю бесконечность натуральных чисел "учитывает".
Ты просто получаешь череду бесконечных бессмысленных операций в таком случае, а не число, которого нет в списке. Потому что там уже вся бесконечность бесконечно пронумерованных действительных чисел.
"Число Кантора" отличается от каждого энтого числа из списка своим энтым разрядом. Поэтому его не может быть в списке.
Там нет числа, там операция, чтобы получить это гипотетическое число, которого может и не быть, в виду того, что там бесконечное число этих чисел, так что ты просто бесконечно меняешь число, но оно никогда не становится новым оригинальным числом.
А, опять эта дегенеративная хуйня от малолетних дебилов! Никакой ситуации, что во времени происходит процесс, что кто-то или что-то сидит и выписывает пары натуральных и вещественных чисел, нет. Это ты сам эту хуйню придумал потому что не осилил несколько банальных определений.
Никто не говорил, что во времени происходит процесс. Он происходит моментально, если хотите. Не это главное, а то, что всякий раз, когда ты меняешь число, там находится ещё бесконечное количество чисел, для которых нужно изменить твое число так, чтобы оно отличалось от твоего, пока не получаешь новое число, чего никогда не происходит, потому что бесконечность чисел уже там выбрана.
>Он происходит моментально, если хотите.
Тогда и "число Кантора" строится моментально. "Построился" список пронумерованных чисел, "построилось" и вещественное "число Кантора", которое отличается от любого из вещественных чисел в списке.
>чего никогда не происходит
Почему? На каждом шаге эн оно отличается от энтого вещественного числа в списке. Оно не совпадает ни с одним вещественным числом из списка.
Где оно отличается? Оно отличается до тех пор, пока ты не находишь ещё одно число в этом бесконечном списке, которое совпадает с твоим только что измененным числом, и так до бесконечности. Это просто бесконечная итерация поиска, но не новое число.
>пока ты не находишь ещё одно число в этом бесконечном списке
От вещественного числа номер n+1 оно будет отличаться в разряде n+1.
>и так до бесконечности
В этом и смысл, у вещественного числа счётная бесконечность разрядов, и каждый из них отличается.
Но их все ещё бесконечность, поэтому ты делаешь это до бесконечности, никогда не находя нужное отличное число.
>никогда
Никто не говорил, что во времени происходит процесс. Он происходит моментально, если хотите.
Список строится "моментально", и "число Кантора" тоже строится "моментально".
А если ты апеллируешь к тому, что сам список никогда не может быть построен потому что он бесконечный, то просто вернись к началу диалога.
Но число Кантора не строится, потому что ты строишь его вечно? Бесконечность означает, что сколько бы ты итераций и изменений не провел, всегда будет ещё одно n, где тебе нужно будет провести операцию для своего числа в этом n-ном разряде, чтобы оно отличалось от данного числа, нет?
Оно и записывается, и строится бесконечно. Что это за число такое, для которого, сколько бы ты изменений в нем не провел, всегда будет ещё одно n, где тебе нужно будет провести модификацию для своего числа в этом n-ном разряде, чтобы оно отличалось от данного числа?
а число $\pi$ тебя не смущает?
чтобы его правильно записать, надо произвести бесконечное количество вычислений
здесь то же самое: ты не изменения в числе проводишь во времени, а просто считаешь его с возрастающей точностью. при этом задано оно уже полностью, как только задана полностью функция $\mathbb{N} \to \mathbb{R}$
> Это просто бесконечная итерация поиска
В /pr или в жж Кравецкого съеби. У тебя мышление убито программированием, тебя не спасти, к сожалению.
>Оно и записывается, и строится бесконечно.
У всякого вещественного числа счётная бесконечность разрядов. Столько же, сколько и натуральных чисел.
>Что это за число такое, для которого, сколько бы ты изменений в нем не провел, всегда будет ещё одно n, где тебе нужно будет провести модификацию для своего числа в этом n-ном разряде
Потому что это не число, блядь, это функция. Аргументом этой функции является функция из N в R, а значением вещественное число, не какое-то конкретное число, а именно что в зависимости от аргумента. Функция от функции. Есть запись вида a(b(c)), то есть композиция функций, а здесь сама функция, то есть всё множество упорядоченных пар, является аргументом другой функции.
Платонизм и математика несовместимы, кстати. Платонисты не верят в отношения, то есть они верят в предикаты формы P(x), то есть свойства, а вот в P(x, y) они уже не верят.
Поясни.
Ты хочешь доказать, или опровергнуть, что числа из R можно пронумеровать. ВСЕ числа.
>но я не могу, на том основании, что, поскольку ты можешь бесконечно выбирать рандомные числа из R и нумеровать их, доказательство Кантора кажется несостоятельным
Да, ты можешь. Но это не доказывает, что ты их всех пронумеруешь. Просто доказывает, что какое-то подмножество R ты пронумеруешь. Ты можешь бесконечно выбирать целые отрицательные {0, -1, -2, ...}.
> Если ты можешь выбирать их бесконечно, и, таким образом, поскольку ты это сделал, они все должны быть записаны, что мешает их пронумеровать в этом бесконечном списке?
У тебя здесь ошибка и прыжок к неверному заключению.
>Если ты можешь выбирать их бесконечно, и, таким образом, поскольку ты это сделал, они все должны быть записаны
Из первого второго не следует. Я могу из R выбирать одни положительные целые {0, 1, 2, ...} бесконечно. Очевидно я записал не все числа из R.
Док-во Кантора в этом и состоит. Что каким образом ты не выписывай, ты не выпишешь все. Представим что мы не знаем ответ на неё. У нас есть 2 пути её доказать или опровергнуть.
1(доказать). найти явно нумерацию, покрывающую весь R, формулу или описать алгоритм.
2(доказать). доказать что номерация из 1. хотя бы существует, не выписывая её явно.
3(опровергнуть). доказать что нумерации не существует.
Если ты вместо R возьмешь Q, то ты можешь доказать 1. явной формулой(проще всего если допустить повторы чисел) или 2. как следствие счетности прямого произведения множеств.
У нас есть основания полагать, что всё же R несчетно, потому что оно непрерывно. Ты можешь ирл подсчитать яблочки, но подсчитать воду, саму воду, а не объем или прочие дискретные величины, не можешь, это даже звучит бессмысленно.
Дальше Кантор использует док-во от противного, которое в математике очень распространенно. Он допускает, что нумерация всё же существует и выводит из этого противоречия.
>Я пока только выбор порядковый определил, но потом мы просто нумеруем этот выбор, когда расположили бесконечное количество чисел по порядку. Не означает ли это, что в этом списке должны быть все действительные числа?
Все натуральные числа будут израсходованы, но действительные числа не будут пронумерованы. Это говоря образно.
Диагональный аргумент показывает, что любая нумерация действительных чисел не учитывает те или другие из них.
На деле же, без образности, все рассматриваемые пошаговые процессы являются конечными. Поэтому не может быть законченного бесконечного произвольного выбора действительных чисел одного за другим.
Вместо этого выбор совершается согласно какой-нибудь придуманной формуле - конечной сама по себе,ставящей в соответствие данному натуральному числу определенное действительное число.
При этом сами по себе не существуют ни натуральные числа, ни действительные. Они получаются только в результате их рассмотрения или разговора о них, задания аксиом и формул.
Поэтому все конкретно рассматриваемые в некоем разговоре натуральные и действительные числа, а также формулы - конечны по количеству. Формулы перечисления действительных чисел конечны, выбранные натуральные числа конечны, действительные числа под такими номерами тоже конечны. И для каждой формулы рассматривается только одно ею неперечисленное действительное число, хотя теоретически таких чисел бесконечно.
Попробую доказать: если число нечётное, то количество повторений будет тоже нечётное. Например 7х7. Нечётное умноженное на 2 становится чётным. 7х2=14. Но если оно нечётное, то количество повторов тоже будет нечётным, т.е. чётность перекроется последним добавлением нечётного числа 42+7=49. И всё. И приехали. Я прав?
>При этом сами по себе не существуют ни натуральные числа, ни действительные. Они получаются только в результате их рассмотрения или разговора о них, задания аксиом и формул.
Это надо в закреп добавить или в шапку треда.
>Поделил его пополам на два прямоугольных треугольника и понял что можно тут же найти площадь
Какая площадь у этих прямоугольных треугольников? Как ты ее запишешь не используя корень из трех?
это так здорово, когда твой незамутнённый ум, вообще никак не осведомлённый ни о каком опыте человечества, вдруг сталкивается с проблемой, которая волновала людей несколько тысяч лет назад
Найти половину а, найти h теоремой пифагора, корень стороны можно перевести в нормальное число видрил формулой:
https://www.youtube.com/watch?v=MXveVqBxFow
h x a будет площадь треугольника, потому что их два одинаковых.
Уже ведь придумали всё, зачем упоротые числа использовать, я не понимаю...
А может ты? Я спросил прямо: нахуя придумывать упоротые формулы с несуществующими числами, когда можно без них обойтись. В ответ ты пукаешь с умным видом.
>h x a будет площадь треугольника
Пересчитай.
>>1833
>нахуя придумывать упоротые формулы с несуществующими числами, когда можно без них обойтись
Ты без них не обошелся, ты посчитал площадь используя "упоротые" числа и потом нашел рациональное число которое достаточно близко к "упоротому" корню из трех. Многие люди используют для подобного так называемые "калькуляторы", но ты можешь также пользоваться методом из видео.
узнаю почерк Вавилова, лол
А тебе кто-то обещал профит?

В переменную?
только в часть
Правда, что в Москве преимущественно говорят действительные а в Петербургу вещественные числа?
Пределы последовательностей рациональных чисел это функции которые принимают на вход натуральное число n и возвращают рациональное с n знаками после запятой
более точно сказать, это элементы пополнения множества рациональных чисел, снабжённого стандартной метрикой
зачем ты порвался?
Но не интуитивно, и человек продолжит не верить.
Только я придумал что в тком случае делать с длинами сторон треугольников. Можно сказать, что не все измеряемые, но некрасиво выходит
НЕ придумал
Многие греческие учёные были в Египте. Разве нет? Прасолов что-то писал в своей книге по истории математики. На счёт каких-то Тотов неизвестно.
Если заменить дуб на эквивалентный по весу объём ели, общий вес не изменится. Для получения веса дуба, выраженного в елях, сделаем $(6+\frac{1}{2}) \cdot (1+\frac{1}{3})$
Прибавим $2 + \frac{2}{5}$. Это количество кубических метров ели, которое весит $6 + \frac{16}{25}$ тонн
Соответственно чтобы узнать вес одного кубического метра ели, делим общий вес на общее количество метров. $(6 + \frac{16}{25}) :(((6+\frac{1}{2}) \cdot (1+\frac{1}{3})) + (2 + \frac{2}{5})) = \frac{3}{5}$ тонны весит кубический метр ели. Дуб соответственно по условию $\frac{3}{5} \cdot (1 + \frac{1}{3}) = \frac{4}{5}$
$n \cdot n = n_1 + n_2 + n_3 + \cdots + n_n$
$n+n = n \cdot 2 = 2n mod 2 = 0$
Если $n$ - нечетное, то $n_1 + n_2 + n_3 + \cdots + n_n = n \cdot (n-1) + n = n^2 mod 2 \neq 0$
Следовательно, $n^2$ - нечетное.
P.S. И нахуя я это написал.
>>1868
Дядя с таким уверенным ебалом шпарит, но на самом деле несёт хуйню. Есть очень большая разница между рецептурным знанием и научным. Научное знание отвечает на вопрос "почему?", оно строит какие-то теории, доказательства и итд. А рецептурное знание - это по сути те же танцы с бубном. Мы знаем, что у треугольник со сторонами 3, 4, 5 является прямоугольным. Почему? В Древнем Египте такой вопрос не задавался. А в Древней Греции такой вопрос задали и придумали геометрию как дедуктивную систему аксиом и доказательств. Это как в том анекдоте, в результате многолетних исследований муравейников в Московской области было установлено, что отношение длины окружности любого муравейника к его диаметру - величина постоянная, приблизительно равная 3.
Спасибо.
Квадрат нечётного - произведение квадратов всех его простых множителей. Нет простого множителя из N, в квадрате дающего 2, квадрата двойки тоже нет, потому что двойки не было. Потому квадрат нечётного - нечётный. Всё, хуле там доказывать-то?

460x412, 0:05
Читаю, разбираюсь, потом забываю. Как фиксить, памагите111
>Читаю, разбираюсь, потом забываю.
это норма, если не пользоваться новым знанием регулярно
делай конспекты - но обязательно такие, чтобы легко они легко и быстро читались (тобой)
тогда восстанавливать будет легче
У меня со всякими квантовыми механиками и ядерными физиками так же. Интересно пиздец как, а через год-другой забываю, ибо нафиг в жизни не нужно. В голове только чувство охуевания от красоты устройства нашего мира. Раз пять всё это по новой перечитывал. Конечно же научпоп.
аугментировать знания в текст - решения задач, схемки, рисунки, скетчи, идеи, математический дневник - все во внешнее персонализированное хранилище. spaced repetition, преподавание изученного, отвечание на стэке, перечитывание при необходимости.
уходи
>аугментировать знания в текст - решения задач, схемки, рисунки, скетчи, идеи, математический дневник
так и зделою, достал тетрадку, буду рисовать всякое
>>1890
>Интересно пиздец как, а через год-другой забываю, ибо нафиг в жизни не нужно
Ну это такое, вон Онотоле Вассерман всякой хуйни не нужной помнит и ему норм, при чем он не самый крутой. Человек может много всего запомнить, нужно как то мнемотехнику прокачивать.
Я хочу понимать как это всё работает, а не просто задрочить алгоритм.
Исходя из твоего описания, тебе нужен матан для математических факультетов.
x^2 = -4
извлекаю квадратный корень из обоих частей уравнения
sqrt(x^2) = sqrt(-4)
получаю
|x| = +- 2i
в итоге, у меня модуль равен комплексному числу, чего быть не может, так как модуль и комплексного, и вещественного числа это вещественное число, по определению, или расстояние, в геометрическом смысле. Какая операция тут была неверной?
придумали божков по своему подобию, а потом, после каких то открытий, ноют, что бог оказывается так вообще не задумывал
Ты сам-то понимаешь, откуда ты модуль получил? Гугли арифметический корень. Это лишь соглашение, в комплексном случае оно не используется.
Какой предмет и объем ты подразумеваешь под матаном?
Приведи пример: где ты встретил матан, что было не разжевано, также что ты считаешь разжеваным?

вот нахуя ты знак конъюнкции между суммой и логическим выражением ебанул
сам-то понял, что написал?
Математики доказали абсолютную теорему?
да, пиво без водки - денги на ветер

>>1912
>Читаю, разбираюсь, потом забываю. Как фиксить, памагите111
1. Мнемоника. Читай любую книгу по этой тематике, ну или это статью:
https://deru.abcdef.wiki/wiki/Merkspruch
Если сложно "дворцы" создавать, используй карты из игр, журналы про жильё, инженерные кады или sims.
2. Mind maps. Очень полезная вещь.
3. Быстрое чтение.
4. Спорт. И здоровое питание. Очень помогает мозгу. Ещё хорошо мозг развивает жонглирование, и новые хобби.
сдохни сам, анонимное говно

>Когда эта жидовская чурка сдохнет?
чот пучкнул
Я тебя не понял. Изучи язык первого порядка и пиши на нем. Почему вы думаете, что логический язык - это стенография и пишите без определенных правил? Ну, понятно, в ВУЗе так учат. Ой, бли-ин...
Это Дробышевский?
Какой же он жид? Он сто процентов ортодоксальный христианин.
Здесь два вопроса в одном.
Для дегенератов и на уровне так называемых "причинно-следственных связей".
Любой курс мат анализа строится как последовательность теорем, поэтому нет никакой проблемы всё это освоить по шагам.
Но для этого надо немного шарить в логике, а это отдельная дисциплина, и невозможно всё это объединять, поэтому логика живёт отдельно где-то на философских факультетах, а мат анализ отдельно.
Как вы вообще себе представляете, что на математическом форуме вдруг начнётся спор об универсалиях? И там выступит Савватеет

Дочитал книгу до третьей главы и заблудился, при том материал первых двух уже плохо помню. Решил не продолжать чтение, а начать с начала ведя конспекты и прорешивая все задания, ответы на которые я в основном подсматривал, план такой, смотрю и прорабатываю решение, потом через какое то время пытаюсь его повторить по памяти. Я молодец?
Не владеешь интуитивным пониманием темы. Не знаешь поставленные задачи и мотивацию теории.
Можно ли считать точку вектором? Получается тогда, что вектор образованный между точками, есть разность векторов, а вычитание точки из точки фигня какая то. Каков положняк?
Гугли что такое афинное пространство, там с участием векторного пространства.
От афинного пространства можно обратно к векторному перейти. Точку можно считать вектором, если в афинном пространстве выбрать точку отсчёта, откуда проводить вектора до любой точки.
А можешь мне объяснить почему в алггеоме исследуют вроде бы афинные пространства, хотя про вектора как то там в курсах ни слова?
в алггеоме используются афинные пространства, потому что именно в афинном пространстве удобно изучать нули многочленов. в афинном пространстве нет выделенной точки (нуля), к которой привязана его геометрия, и это удобно, поскольку геометрия нулей многочленов тоже не привязана ни к какой выделенной точке
>в афинном пространстве нет выделенной точки (нуля)
Разве в алггеоме не будет такой выделенной точкой 0=(0,0,...,0)?
Я просто пытаюсь понять как связаны определение афинного пространства по определению с векторами и то "А" которое в алггеоме используется и я не вижу ничего общего.
А как в твоих книжках опреляется афинное пространство и его точки?
В некоторых книжках вполне себе говорят при первом определении про подлежащее векторное. В других говорят просто, что
афинное пространство размерности n -- это набор кортежей вида $(a_1,...,a_n)$, что напоминает определение векторного пространства $k^n$, не так ли (мы только о линейной структуре тут не говорим)? А где-то авторы считают, что это уже очевидный и хорошо известный с разных сторон объект.
Одна из эквивалентных интерпретаций такая: если давать определение афинного пространство через множество точек и векторное пространство, то ты когда координаты точки записываешь, ты выбираешь точку отсчёта и на самом деле в некотором смысле работаешь в векторном пространстве уже. И полиномы вычисляешь в конкретной системе координат, и нули там же ищешь. Полиномы можно трактовать как элементы симметрической алгебры $SV^{\times}$, построенной на подлежащем векторном прострастве $V$.
Другое дело, что нас в афинном алгеме обычно интересует лишь множество решений, поэтому линейная структура нам не особо интересна, поэтому "туповатое" опредление через кортежи чаще всего нас тоже устроит. И ещё мы хотим менять не только базисы, но и систему координат, поэтому не ограничиваемся только действительно линейными (без констанстных членов) преобразованиями. Собсна, другое определение афинного пространства -- это как раз векторное пространство, но с более широким набором преобразований.
она не нужна. ты можешь сделать замену координат, в которой она станет $(1,1,\dotsc,1)$, при этом множество нулей твоего многочлена останется тем же
вообще говоря, нам хотелось бы понимать нули многочленов как своего рода многообразия, которые определены абскратно, уже безо всяких координат. и для них в качестве карт как раз удобно рассматривать афинные пространства, потому как афинные преобразования укладываются в то, что удобно считать морфизмами таких многообразей
у тебя тут есть анон, который пишет подробнее, пусть он рассказывает
>В других говорят просто, что
>афинное пространство размерности n -- это набор кортежей вида (a1,...,an)
Ну да, литерали так и определяется. Без охуительных историй про отсутствие выделенной точки. Поэтому мне и не понятно откуда они берутся.
афинное пространство - это множество, на котором задано свободное и транзитивное действие векторного пространства
Ну, потому что для большинства теоретических построений достаточно проделать всё в выбранной системе координат с выделенным началом по сути, отождествляя точки со множеством радиус-векторов. И/или как можно быстрее перейти от замкнутых подмножеств афинного пространства к идеалам.
Но скорее всего в твоей книжке всё равно есть какие-нибудь конкретные примеры, где что-то про выбор системы координат сказано вскользь. Если да, то это уже какая-то дополнительная структура на твоём множестве кортежей (если только это тоже не с алгебраической точки зрения объясняют).
Напомню, что алгебраическая геометрия -- это не только изучение колец и их идеалов, а также когомологий пучков, но и про свойства фигур, которые иногда мы даже можем нарисовать. Странно было бы, если бы мы не могли менять выделенную точку и рассуждения, которые годились бы для кривой, не подошли бы для смещённой кривой.
Это примерно то же самое, что считать, что векторное пространство определяется не просто набором векторов, но там ещё и фиксирован базис всегда, а к другому базису мы переходим через изоморфизм.
>не припомню чтобы где то явно что то куда то смещалось хоть в одной теореме алггеома
В теоремах про свойства локальных колец в точке любят обычно предполагать для простоты выкладок, что эта точка в начале координат лежит.
Т.е. можно начать просто с множества кортежей без каких-либо операций, а потом сказать, какие морфизмы мы в этой категории рассматриваем. При необходимости аффинную и векторную структуру мы из автоморфизмов восстановить, кажется, можем (например, автомофризм (f(x)=x+p, g(y)=y+c) можно трактовать как сложение с вектором (p, c), и так для любого вектора).
Так что в принципе однохуёственно, кажется, мы же не в изоляции на множества эти смотрим.
>но есть-то и другие автоморфизмы.
какие другие?
>Т.е. можно начать просто с множества кортежей без каких-либо операций, а потом сказать, какие морфизмы мы в этой категории рассматриваем.
на этом множестве, а не в категории
получится афинное пространство с выбранной системой координат
>какие другие?
Треугольные автоморфизмы, например. Для аффинной плоскости это теорема Юнга или как-то так.
>на этом множестве, а не в категории
Я имел в виду, когда проделаем обычную машинерию по определению аффинных многообразий (кажется, её можно проделать просто с множествами кортежей без доп.структуры a priori) и скажем, какие морфизмы хотим рассматривать в целом, то тогда и с афтоморфизмами кокнретного множества будет всё понятно.
>получится афинное пространство с выбранной системой координат
Ну да, о том и речь.
* Для аффинной плоскости это теорема Юнга или как-то так.
В том смысле, что полное описание автоморфизмов даёт, если вдруг интересно. Можно просто привести пример, который не является афинным преобразованием, конечно: $(x, y) \mapsto (x+y^2, y)$.
>из автоморфизмов восстановить
Из подмножества эндоморфизмов всё же, на ноль тоже надо уметь умножать.
Можешь показать?
>>1983
То что ты как всегда бессвязную хуйню несешь, мелкочмонь. Ну вот взял и вынудил меня раскрыть все карты. Надеюсь не приключится очередной срач на несколько сотен постов.
>>1984
Не улавливаю твой ход мысли.
Но вот я думаю тут должно быть что то совершенно очевидное, что лежит прямо на поверхности. Потом когда я откопаю это и напишу тут, наверняка какой нибудь умник мне напишет - а ну это же очевидно. Бывало такое уже и не раз.
Ну вот, к примеру.
Если перейти к алгебраическому описанию, то выбор системы координат можно трактовать как выбор образующих в алгебре. 4 пик примерно в таких терминах рассуждает.
Ну да, очевидно: если мы рассматриваем кортежи как аффинные многообразия, то аффинная и векторные структуры на них есть, но мы это отдельно не проговариваем, так как интересуемся более общими свойствами. Когда мы рассматриваем , например, R^n как гладкое многообразие, то мы обычно тоже не говорим о том, что это ещё и аффинное многообразие, хотя записываем координаты тоже в виде кортежей и при необходимости алгеброгеометрическую структуру восстановить можем (аффинные эндоморфизмы гладкие естественно).
петух-неосилятор, давно не виделись! ты решил с картофана перейти на первую культуру? сильное решение. жаль, опять полный провал, потому что хуйню несёшь ты (тоже опять). но всё же удачи в этом начинании, я поддерживаю
Страдаю шизой, которая требует от меня ИДЕАЛЬНЫХ конспектов, из-за чего я трачу овердохуя времени и сил на эту хуйню. Из-за этого также не способен сесть и чисто по фану послушать лекцию, ведь "мне нужно это записать это ВАЖНО!!".
Первые два курса уника лечился похуизмом: забивал хуй на конспекты, и соответственно на предметы. Но сейчас хочу изучать все нормально. Как научиться отпускать перфекционизм?
можно делать всё, что угодно, если это для тебя работает
можно вообще ничего не слушать, а сразу решать задачи
А зачем конспект вообще нужен (за пределами экзамена), если есть учебники и, чаще всего, готовые заметки лекций от лектора/одногруппников? Мне кажется, имеет смысл своими заметками только дополнять проблемные/интересные места.
На мой вкус анализ это трюки и картинки, доказательства оттуда не запоминаются, а откладываются в виде "какой-то ебанутый трюк с нормами и неравенствами, дающий нужную оценку" или "неявная функция+чейн рул", а детали всегда трудновато восстановить сходу. Я внятно понимаю только теоремки где инварианты топологические пресервятся. Чтобы понять глубже и запомнить надо свои картинки рисовать, расписывать интуиции свои, а переписывать учебник и слова лектора кажется хуетой какой-то.
Какие-то фишки из этих методичек мб зайдут:
https://docs.google.com/document/d/1BLme5o6AQ3i2m5nK76QJcBPZzH5NDV19g4wlkHNS53A/edit?tab=t.0
https://pi.math.cornell.edu/~zakh/homeworkguide.pdf

Что не смеетесь?! Не смешно?!!
Тогда уж $k^n$-торсор.

Помогите упорядочить

42
Парни, я знаю, что это очень простое задание, но я реально не справляюсь, помогите, пожалуйста.
Спасибо!
открой книжку манина и попробуй поглядеть, как оно тебе заходит
ты что конкретно собрался в ней делать? если просто изучать, то ничего сложного. Всё то, что и в любой другой теме. Никто за тобой не бежит, и экзамена в конце жизни нет, умрёшь с тем, что успел постичь, а дальше уже не важно будет
>ты что конкретно собрался в ней делать?
Понимать, уметь что-то. Люблю аутично копаться в числах, вот и заинтересовался.
И что там трудного?
И ещё слегка связанный вопрос: есть ли какой-то класс алгебр Ли, которые можно представить как алгебры дифференцирований?
И ещё вопрос: есть какое-то обобщение теоремы Адо кстати как правильно - Адо или адО? на бесконечномерные алгебры Ли?


а является элементом {a}, и элементом {a, b}.
{a} это подмножество {a, b}.
Если оставить только {a, b}, то потеряется порядок, так как в множествах он не важен: {a, b} = {b, a}. Из-за чего упорядоченная пара не смогла бы сохранять порядок: (a, b) = {a, b} = {b, a} = (b, a).

Небольшая тонкость, но хотя тут верное определение, мне кажется, лучше начать с другого: (a, b) = {{a}, {a,b}}.
Мне кажется, это более понятное, но ещё и эквивалентное тому, что написано на доске.

Мы ведь уже знаем, что в 2 |G|=n, а до этого в предложении доказали, что |Aut|<=n
А блядь сорри я дебил жопочтец
в теореме формулируются три утверждения, автор их доказывает по схеме 1) => 2) => 3) => 1)
текст, мягко говоря, недружелюбный
>>2057
алгебра Ли векторных полей тебя устроит в качестве алгебры дифференцирований?
алгебру Ли всегда можно представить как подалгебру эндоморфизмов какого-то бесконечномерного векторного пространства (независимо от её размерности), в каком-то смысле это аналог теоремы Адо. но не очень полезный: если мы говорим о бесконечномерном случае, мы, наверное, хотим также наделить наши пространства топологией и чтобы все представления топологию уважали (т.е. чтобы гомоморфизмы между алгебрами были непрерывными). а это вопрос значительно более трудный, его можно ставить для различных видов топологических векторных пространств, и мне в этом направлении ничего неизвестно. что-нибудь должно быть, надо полагать
Мы с тобой играем в игру: я называю число или даю определение некоего числа, а ты должен сказать его порядковый номер в своём списке. Если ты сумел отбиться три раза, ты победил, иначе ты у меня сосёшь хуй.
- 12341324184581358931858513298,41235135441234, - начинаю я.
- Это рациональное число у меня есть под номером 31809123482194801248120380129380129301293801238012380313809124809124, - отвечаешь ты. Список действительно очень длинный.
- Отношение диаметра окружности к её длине, - делаю я ход поинтереснее.
- 1, - ловко парируешь ты. Все козырные константы ты выписал первыми.
- Такое число, которое отличается от первого числа в твоём списке первой цифрой на единицу, от второго - второй цифрой, и так далее, ну ты понял, - вбрасываю я определение.
- Но это не число!
- С хуя бы? Я дал чёткое определение, как это число вывести с произвольной точностью до любого знака. Список прямо у тебя в руках. Давай, ищи его у себя там.
Ну и ты кароч у меня хуй сосёшь.
Кстати, угорал с таких книг, где сначала так определяется упорядоченная, а потом в какой-то момент рассматривается множество и автор наивно полагает, что среди его элементом можно различить однерки, пары, тройки и т. п. Хотя все эти элементы - всего лишь множества, допускающие двоякое толкование.
>>2061
К тому же, аккуратнее, и позволяет обойти некоторые моменты, как описанны выше, но не все.
>Как элемент может принадлежать вложенному множеству и при этом быть вне него одновременно?
В смысле, "вне него"? Он внутри него. Но при этом также и внутри еще одного множества. Элемент может одновременно принадлежать различным множествам.
Есть два элемента a и b, получается множество {a, b}. Это такое множество, что при любом x выполняется x ∈ {a, b} тогда и только тогда, когда или x = a, или x = b.
Теперь по той же схеме берем a и {a, b}, получается {a, {a, b}}. Для любого x x ∈ {a, {a, b}} тогда и только тогда, когда x = a или x = {a, b}.

>>2059
Мне запись {{a}, {a, b}} кажется нелогичной, избыточной. У нас и так есть множество {a, b}, мы как бы говорим "множество, в которое входит множество, в которое входит a и b, и еще в него входит множество, в которое входит a". Мы тут повторяемся. Анон >>2059 любезно пояснил что, тем что мы дублируем a мы показываем что она первая в паре, но это как-то странно, я не понимаю как из ее повторения следует то, что она первая
тебе нужно на двух элементах $a,b$ образовать такое множество $P(a,b)$, изоморфное $\{a,b\}$, при этом чтобы $P(a,b) \neq P(b,a)$
тебе также хочется писать $a \in P(a,b)$, вместо этого следует писать $\varphi(a) \in P(a)$, где $\varphi\colon \{a,b\} \to P$ - указанный выше изоморфизм.
таким образом получается полная анология с "наивным" определением упорядоченной пары: $(a,b)$ это такой набор, что $a,b \in (a,b)$ и $(a,b) \neq (b,a)$
подобных конструкций с $P$ можно придумать сколько угодно, и {{a}, {a, b}} есть одна из наиболее простых. никакого инсайта никакая из этих конструкций не даёт, просто указывает на то, что термин "упорядоченная пара" можно определить в теоретико-множественных терминах (и допускает строгое определение, если зафиксирована аксиоматика). на практике об упорядоченной паре можно думать наивно, ничего при этом не потеряешь
>как из ее повторения следует то, что она первая
Это условность: считать, что множество, устроенное как {a, {a, b}}, представляет собою упорядоченную пару (a, b).
Зная эту условность, можно различать, что a поставлено на первое место, а b - на второе.
Как заметил Коллега >>2072, не следует искать скрытой логики в выборе именно такой или другой конструкции для обозначения пары, потому что только ее пригодность играет роль.
Мне кажется, интуитивно это можно воспринимать так:
Какие нам нужные данные для определения упорядоченной пары? Первая порция данных — это собственно два элемента, вторая порция — указание на то, какой из них мы считаем первым.
Давайте, петросяны, ваш выход. Объясните, чем занят этот математик?
>>2059
>>2061
>>2069
>>2071
>>2072
>>2074
>>2075
Я тоже обо всём об этом думал и пришёл к следующему выводу: упорядоченная пара является базовым термином, на основании которого потом определяется всё остальное. То есть если человек изначально не обладает концепцией упорядоченной пары, он попросту не сможет воспринять весь текст выше. Что конкретно я имею в виду? Не касаясь нечётких множеств, рассмотрим высказывание "мой батя лысый". Его логическая форма P(x). Вместо икс подставляется "мой батя", вместо предиката Р подставляется предикат "быть лысым". Вот это предикат "быть лысым", это термин, понятие. И оно даже обозначает что-то в реальности, то есть это не пустое множество. А в частности это множество лысых людей, причём это множество именно в математическом, в канторовском смысле. Теперь рассмотрим высказывание "мой батя поехал на лошади", и вот теперь логическая форма P(x, y), то есть отношение. То есть x - батя, y - лошадь, предикат P - поехал. Здесь две переменные. И это именно что упорядоченная пара, то есть поехал именно батя на лошади, а не лошадь на бате. Вот эта концепция отношения P(x, y) - и есть база, и есть та стартовая точка, через которую мы можем определить функции, а через функции всё остальное.
Концепция множества на самом деле является абстракцией, в частности если мы запишем список из трёх элементов как
a, b, c
a, c, b
b, c, a
и так далее, то у нас всё равное будет получаться какая-то упорядоченность. И только поигравшись с примитивной комбинаторикой, мы сможем отделить саму структуру и элементы, которые её составляют. В реальном мире мы можем столкнуться только с какой-то формой, а сами элементы как таковые - это всегда абстракция. Например, конструктор лего какую-то форму всё равно имеет, даже если он просто свален в кучу. И только составляя из него разные фигуры, ребёнок сможет запомнить, какие у него детали есть вообще в наличии, то есть образует концепцию множества деталей конструктора в своей голове, множества в математическом смысле.
А почему тогда вся эта хуйня начинается именно со множеств? А ни по чему, просто для математики в современном смысле слова используется дедуктивный метод познания, поэтому свои интуиции относительно натуральных чисел необходимо смоделировать в виде каких-то базовых высказываний. Чтобы дальше с ними можно было вести какую-то работу.
В аксиомах Пеано мы имеем счёт: 1, последователь единицы s(1), последователь последователя s(s(1)), s(s(s(1))), и так далее
Или то же самое в другой нотации: 1, 1+1, 1+1+1, 1+1+1+1....
А в теории множеств:
{}
{ {} }
{ {}, { {} } }
{ {}, { {} }, { {}, { {} } }
...
Но на самом деле всё это просто самая примитивная палочковая запись натуральных чисел, палочковый счёт:
I, II, III, IIII, IIIII, IIIIII ...
А римские цифры - это палочковый счёт с сокращениями:
I, II, III, IV, V, VI ....
Суть этого всего одна и та же. Просто математики уже всё это знают, а потом выбирают способ как свои знания закодировать в виде дедуктивной системы высказываний и определений. А человек, который только начинает всё это изучать, он нихуя не знает, поэтому ему сложно всё это понять. Но вопрос преподавания не является вопросом какие аксиомы и определения нам выбрать, а почему-то они каким-то образом в один вопрос сливаются, и на выходе получается хуй знает что. То что Савватеев рассказывает для других математиков то что они и так знают, причём непоследовательно, перескакивая с темы на тему.
>>2059
>>2061
>>2069
>>2071
>>2072
>>2074
>>2075
Я тоже обо всём об этом думал и пришёл к следующему выводу: упорядоченная пара является базовым термином, на основании которого потом определяется всё остальное. То есть если человек изначально не обладает концепцией упорядоченной пары, он попросту не сможет воспринять весь текст выше. Что конкретно я имею в виду? Не касаясь нечётких множеств, рассмотрим высказывание "мой батя лысый". Его логическая форма P(x). Вместо икс подставляется "мой батя", вместо предиката Р подставляется предикат "быть лысым". Вот это предикат "быть лысым", это термин, понятие. И оно даже обозначает что-то в реальности, то есть это не пустое множество. А в частности это множество лысых людей, причём это множество именно в математическом, в канторовском смысле. Теперь рассмотрим высказывание "мой батя поехал на лошади", и вот теперь логическая форма P(x, y), то есть отношение. То есть x - батя, y - лошадь, предикат P - поехал. Здесь две переменные. И это именно что упорядоченная пара, то есть поехал именно батя на лошади, а не лошадь на бате. Вот эта концепция отношения P(x, y) - и есть база, и есть та стартовая точка, через которую мы можем определить функции, а через функции всё остальное.
Концепция множества на самом деле является абстракцией, в частности если мы запишем список из трёх элементов как
a, b, c
a, c, b
b, c, a
и так далее, то у нас всё равное будет получаться какая-то упорядоченность. И только поигравшись с примитивной комбинаторикой, мы сможем отделить саму структуру и элементы, которые её составляют. В реальном мире мы можем столкнуться только с какой-то формой, а сами элементы как таковые - это всегда абстракция. Например, конструктор лего какую-то форму всё равно имеет, даже если он просто свален в кучу. И только составляя из него разные фигуры, ребёнок сможет запомнить, какие у него детали есть вообще в наличии, то есть образует концепцию множества деталей конструктора в своей голове, множества в математическом смысле.
А почему тогда вся эта хуйня начинается именно со множеств? А ни по чему, просто для математики в современном смысле слова используется дедуктивный метод познания, поэтому свои интуиции относительно натуральных чисел необходимо смоделировать в виде каких-то базовых высказываний. Чтобы дальше с ними можно было вести какую-то работу.
В аксиомах Пеано мы имеем счёт: 1, последователь единицы s(1), последователь последователя s(s(1)), s(s(s(1))), и так далее
Или то же самое в другой нотации: 1, 1+1, 1+1+1, 1+1+1+1....
А в теории множеств:
{}
{ {} }
{ {}, { {} } }
{ {}, { {} }, { {}, { {} } }
...
Но на самом деле всё это просто самая примитивная палочковая запись натуральных чисел, палочковый счёт:
I, II, III, IIII, IIIII, IIIIII ...
А римские цифры - это палочковый счёт с сокращениями:
I, II, III, IV, V, VI ....
Суть этого всего одна и та же. Просто математики уже всё это знают, а потом выбирают способ как свои знания закодировать в виде дедуктивной системы высказываний и определений. А человек, который только начинает всё это изучать, он нихуя не знает, поэтому ему сложно всё это понять. Но вопрос преподавания не является вопросом какие аксиомы и определения нам выбрать, а почему-то они каким-то образом в один вопрос сливаются, и на выходе получается хуй знает что. То что Савватеев рассказывает для других математиков то что они и так знают, причём непоследовательно, перескакивая с темы на тему.
>То что Савватеев рассказывает для других математиков то что они и так знают, причём непоследовательно, перескакивая с темы на тему.
То, что рассказывает Савватеев, он рассказывает только для других математиков, которые и так уже это всё знают, а не для обучающихся. Причём рассказывает он сумбурно, непоследовательно, перескакивая с темы на тему. Но математики его и так поймут и согласятся - потому что они уже это всё знают.
Ну если ты баба, то да, иначе у тебя девиация и тебя нужно обоссать.
>>2072
Ок, спасибо. Ну раз мне представление через множества не нужно на данном этапе, остановлюсь на интуитивном понимании, что упорядоченная пара это множество из двух элементов с доп атрибутом в виде порядкового номера.
>>2081
Спасибо, анон. То, что множество это абстракция и в физическом мире его нет потому что все находится на разных координатах в пространстве, я понимаю. Благодарю за пример с порядком аргументов в предложении с лысым батей и деконструкцию римских цифр.
Отождестви алгебру эндоморфизмов с алгеброй $n \times n$ матриц. Если ты превратишь ее в алгебру Ли, то ты получишь касательное пространство в единице группы Ли GL_n($\mathbb{R}$). Элемент алгебры тогда естественно рассматривать как касательный вектор, а результат экспоненцирования как кривую в GL_n($\mathbb{R}$) через единицу, для которой этот элемент это вектор скорости этой кривой в единице. Но ты по идее и так всё это должен знать, так что вопрос мне не очень понятен.
>есть ли какой-то класс алгебр Ли, которые можно представить как алгебры дифференцирований?
Из теоремы Вейля следует, что любая полупростая алгебра Ли g изоморфна алгебре дифференцирований g. По теореме Адо, любая конечномерная алгебра Ли g изоморфна подалгебре алгебры дифференцирований.
>есть какое-то обобщение теоремы Адо
Любая алгебра Ли g изоморфна подалгебре End(U(g)).
Почему природа не любит целые числа?
Потому что вероятность выбрать целое число среди всех действительных чисел равна нулю. Не приблизительно нулю, не «бесконечно малой величине», а строго нулю. Даже несмотря на то, что среди действительных чисел есть целые, да.
Сука, что ты наделал, у меня перед глазами весь день этот еблан теперь кривляется.
интересненько
Вот хорошая лекция, не Савватеев, по упорядоченным парам в теории множеств https://www.youtube.com/watch?v=1Mlv8QBb8xQ&t=3416s
Порвало

720x1280, 0:06
Откуда у тебя яйца, отчима взял?
Как насчет парочки сисек Пита и мадам Козявкиной?
Становится либералом
это не определение, а факт, и из него следует, что вероятность по равномерному распределению случайного выбора целого числа из всех действительных чисел равна 0
это очевидно даже мне, хотя я тервер никогда не учил, а в студенчестве прогулял
>А тут >>2101 написало
Там написано "Потому что вероятность выбрать целое число среди всех действительных чисел равна нулю."
>Т. е. выбрать целое число невозможно?
Зависит от того, что значит "возможно" и "выбрать".
>Где доказательство?
Почему ты думаешь, что приведённый выше аргумент это определение, а не доказательство?
>Зависит от того, что значит "возможно" и "выбрать".
Это значит что вероятность зависит от количества вариантов выбора. Если вероятность равна нулю, то выходит что нельзя выбрать целое число, а это противоречит нулевой вероятности.
В чём не прав?
>Почему ты думаешь, что приведённый выше аргумент это определение, а не доказательство?
Почему ты отвечаешь вопросом на вопрос?
>тебе надо всю меру Лебега вываливать?
Нет. Предоставить само доказательство. Математически описанное.
множество рациональных чисел покрывается интервалами суммарно произвольно малой длины (упражнение), отсюда следует, что его мера Лебега равна нулю (упражнение). подробнее я рассказывать не буду: это элементарные вещи и ты либо тролль, либо тупой (в подобных случаях я предпочитаю предполагать, что имеет место и то, и другое одновременно)
множество целых чисел, сорри
(для рациональных это тоже верно, как и для любого счётного множества чисел)
>множество рациональных чисел покрывается интервалами суммарно произвольно малой длины
Получается, длина есть.
Ты писало выше что вероятность выбора является строго нулевой?
>длина чего есть?
>перечитай внимательно, что я написал.
Перечитай что ты сам написал.
>покрывается интервалами суммарно произвольно малой длины
Ты тупой?
любое счётное поднможество действительной прямой покрывается интервалами суммарно произвольно малой длины
это упражнение для детского сада, если ты не можешь его выполнить или хотя бы что в нём утверждается, не стоит срываться на других
Погоди. Ты указал что наличие "множество рациональных чисел покрывается интервалами суммарно произвольно малой длины".
Ты отказываешься от этого утверждения?
ебать ты конченный даун, просто тупая пиздота. чел, каково это быть дауном?
>из него следует, что вероятность по равномерному распределению случайного выбора целого числа из всех действительных чисел равна 0
>>2131
Оцени прикол. Ты тут пишешь об
>выбора целого числа
а тут
>множество рациональных чисел покрывается интервалами суммарно произвольно малой длины
>>2146
Ты тупой? Изначально же спрашивал относительно целых чисел.
>множество рацоинальных чисел счётное
Да какая разница?
Ты отказываешься от первоначального утверждения на счёт "малой длины"?
любое счётное подмножество действительных чисел, в частности подмножество целых чисел, в частности подмножество рациональных чисел, покрывается интервалами суммарно произвольно малой длины
я нигде выше не написал ни одного неправильного утверждения (а ты заебал троллингом тупостью)
>в частности подмножество рациональных чисел, покрывается интервалами суммарно произвольно малой длины
Так. Убедились что ты не отказываешься от своего утверждения.
Далее тут ты >>2131 писал
>вероятность по равномерному распределению случайного выбора целого числа из всех действительных чисел равна 0
????? Верно?
>(а ты заебал троллингом тупостью)
Ты тупой?
Автор видео не объясняет зачем мы расширяем функцию внутри предела функции, а лишь говорит что научит "раскрывать неопределенность ноль на ноль". Хотя суть подобных задач совершенно иная - понять что даже в случае неопределенности вида [0/0] можно решить данный предел, расширив функцию до кусочной (т.е условно когда x не равен 4, то функция равна (x+3)/x^2; а когда x равен 4, то функция неопределена). Такие задачи показывает что даже если функция не определена в какой-то конкретной точке, это не значит что предела у этой функции в данной точке нет.
Сорри за бомбежку, пригорело. Случайно наткнулся на подобные матвысеры.
скорее очередной петух-неосилятор (возможно, тот же самый) опять ничего не понял и затеял срач, задействовав троллинг тупостью
но ты можешь считать, что ты победил, мне не жалко
>>2159
>Многие видео по математике не объясняют суть задачи и ее понимание, а лишь как зазубрить решение определенных типов задач.
вероятно, авторы таких видео сами не понимают, чему учат
их можно понять: они сами выучили так и другого не знают
Если у тебя есть отрезок, который короче любого другого, произвольно короткого, отрезка, то какая у этого отрезка длина?
>Если вероятность равна нулю, то выходит что нельзя выбрать целое число, а это противоречит нулевой вероятности.
В чем противоречие?
>Это значит что вероятность зависит от количества вариантов выбора.
Грубо говоря, всё, что тебе пытаются объяснить, это то, что действительных чисел настолько больше чем целых, что если ты закроешь глаза и тыкнешь в случайную точку действительной прямой, то эта точка будет целым числом "почти никогда". Это "почти никогда" формализуется как "событие с вероятностью нуль", "подмножество действительных чисел с мерой нуль", и наверное еще много как.
>>2163
>то эта точка будет целым числом "почти никогда".
А теперь вспоминаем что было написано тут
>>2101
>Не приблизительно нулю, не «бесконечно малой величине», а строго нулю.
Где же твоя строгость теперь?
>>2161
Я могу считать, и не без оснований, что ты тупой, высокомерный дурачок, который даже не понял в чём придирка. А то что ты ещё и бездоказательный, так в разделе math это приравнивается к пустышке.
а почему один? в группе проще и интереснее
>Где же твоя строгость теперь?
"Почти никогда" это то же самое, что "с вероятностью строго равной нулю", по определению, и интуитивно.
>если ты на протяжении приличного времени не способен выразить
Если ты на протяжении приличного времени не способен понять очевидного, то может ты просто тупой? Легко заметить что, это риторический вопрос. И вообще, зачем ты вписываешься тогда, если не тянешь, дебил?
Даже здесь >>2170 признали что "по определению".
ты даже не удосужился прямым текстом написать, что именно тебя смущает. только троллинг тупостью и требования "доказательства"
тебя смущает, что возможное, вообще говоря, событие может иметь вероятность строго 0? или что непустое множество может иметь меру 0? да, так бывает, почитай учебники и прекрати кудахтать
>тебя смущает, что возможное, вообще говоря, событие может иметь вероятность строго 0? или что непустое множество может иметь меру 0? да, так бывает, почитай учебники и прекрати кудахтать
Меня смущает что тупой человек не видит разницы между невозможным событием, которому соответствует строго нулевая вероятность и событием с бесконечно малым значением, которое относится к наличию чисел на данной прямой. При этом, этот тупой человек признавался что прогуливал пары по теории вероятностей. А ещё меня смущает что тупой человек не улавливает разницы между доказательством и определением, пытаясь списать свою необразованность на попытку послать читать "источники".
>почитай учебники
Может ещё и в библию заглянуть? Хотя, это тоже риторический вопрос.
Только идентичными натуральным
>Меня смущает что тупой человек не видит разницы между невозможным событием, которому соответствует строго нулевая вероятность и событием с бесконечно малым значением, которое относится к наличию чисел на данной прямой.
дело не в том, что человек тупой, а в том, что ты не понимаешь базовых определений. говорю же, учебники почитай
>событием с бесконечно малым значением, которое относится к наличию чисел на данной прямой.
бред сивой кобылы
>ты не понимаешь базовых определений
Очередной перевод стрелок.
>бред сивой кобылы
Очередное мнение безграмотного и тупого человека.
>невозможным событием, которому соответствует строго нулевая вероятность
Нет, нулевая вероятность соответствует событию, которое происходит почти никогда, точкам, которые лежат на прямой почти нигде, подмножествам с мерой нуль, и т.д. и т.п. "События с бесконечно значением", как и "бесконечно малые значения" в целом, это бессмыслица. Теория вероятности не про "возможность", для этого смотри модальные логики всякие.
если ты хочешь принести какой-то гибрид тервера и нестандарнтого анализа, так и скажи. вообще попробуй сказать что-нибудь осмысленное кроме "ГДЕ ДОК-ВО????????" и "ТЫ ЧТО ТУПОЙ????"
видишь ошибку? укажи, где она
>которое происходит почти никогда
Почти? Т. е. может произойти?
>почти нигде
Т. е. где-то?
>"бесконечно малые значения" в целом, это бессмыслица
Ну это же ты решил конечно?
>Теория вероятности не про "возможность"
А про вероятность событий. Вот это открытие. Ты тоже прогуливал пары по вероятностям?
>>2178
>гибрид тервера и нестандарнтого анализа
Обычная теория вероятностей на непрерывных уже не устраивает тебя. Поразительно.
>вообще попробуй сказать что-нибудь осмысленное
Вообще всё уже было расписано, но мне не хочется подстраиваться под дебила. Перечитывай, дебил.
>>2173
>А про вероятность событий. Вот это открытие.
Должно быть открытием для тебя, потому что ты продолжаешь настаивать на формулировках с "может", "не может", "возможно", "невозможно". Например тут же:
>Почти? Т. е. может произойти?
Что значит "может"? Если это значит "с вероятностью отличной от нуля", то нет, не "может". Есть строгий формализм теории вероятностей, в котором "почти никогда" и "почти нигде" строго определённо, как "с вероятностью нуль" и "с мерой нуль". Этот формализм в свою очередь основан на формализме действительного анализа, в котором никаких "бесконечных малых" нет.
>всё, что ты написал до сих пор, - это оскорбления и троллинг тупостью
Легко заметить что, это мнение дебила. Причём дебила, который изначально начал оскорблять первым.
Такая жалкая, мразотная попытка выставить себя хорошеньким. Клинический дебил ты.
>>2183
>Должно быть открытием для тебя
Нет. Это открытие для тебя скорее, раз ты не знаешь что взятое по определению явление одной теории может не соотноситься с другой.
>Если это значит "с вероятностью отличной от нуля", то нет, не "может".
Уповая на меру Лебега ты упускаешь что у тебя определение, о котором ты и признался. Т. е. данное положение принято, а не доказано. Но вот забавный момент - при мере Лебега существуют парадоксы, которые делают теорию не универсальной. Попытка связать полностью теорию вероятности с вещественным анализом провальна. А теперь возвращаю тебя на тропу классического анализа: так где ты тут именно (точно) нулевую вероятность увидел выбора целого числа на действительном отрезке увидел?
этот петух порвался, несите следующего
в принципе, тебе ничто не мешает построить вероятностную меру, в которой вероятность выбора целого числа среди всех действительных будет равна $1$. но если зафиксировать равномерное распределение, то вероятность будет равна $0$; см. уточнение>>2131. если весь твой батхерт сводится к тому, что вероятностную меру можно выбрать другую, тебе следовало об этом сказать значительно раньше, лол. "парадоксы" меры Лебега здесь не при чём. "универсальность" теории это какой-то бред, сродни тому, где ты выше начал рассказывать "про бесконечно малые значения событий, которое относится к наличию чисел "

когда я был начинающим, я попробовал почитать книжку "Что такое математика?" Куранта-Роббинса, которая, в принципе, представляет собой дефолтный ответ на этот вопрос
но она мне не зашла
так что я стал читать нормальные книги, а при другие уже ничего не знаю
Скорее всего, он имел в виду LaTeX, где получается файл в формате .dvi
Скажи что нибудь на математическом?
В конечных множествах 0-ая вероятность выбора элемента с неким свойством означает невозможность выбрать таковой. Но в бесконечных множествах при 0-ой вероятности выбор все же возможен. Действительные числа составляют бесконечное множество.
Это всё понятно, но вот никак не исключает наличие вариантов целых чисел на прямой.

Я правильно понимаю, что если среди всего бесконечного множества действительных чисел есть целые, то выбор их равен нулю, потому что потому. Хуйня какая то по определению если честно.
утверждение "выбор равен нулю" не имеет смысла
определись, что именно ты хочешь сравнить с нулём
>что именно ты хочешь сравнить с нулём
То что тыкая хуемпальцем на угад, я никогда не ткну в целое число
Тут пока только с петухов спрашивают
Дебил, тебе тяжело признать что у тебя нет аргументов. Тебя макнули в суть определения, а ты ещё пытаешься что-т вякать. Ой дебилище.
сформулировать, я имел в виду

Пацаны, не ссорьтесь
Сливом твоего холодного пота при переживании из-за непонимания вероятностей и меры Лебега? Ну что ж.
определения строго напиши, про которые ты рассказываешь, и укажи прямо ошибку, если ты её где-то видишь
без конкретики весь твой срач это голословный детский сад
>без конкретики весь твой срач это голословный детский сад
Очередное мнение дебила.
Попроси, тогда пришлю определения.
дорогой мой петух-неосилятор, ты ничего не пришлёшь, потому что у тебя ничего нет, ты ничего не знаешь и не понимаешь, потому что ты ничего внятного не написал ни разу раньше, потому что вот это
>Попроси, тогда пришлю
это голимый детский сад,
а эксцесс про "события с бесконечно малым значением, которое относится к наличию чисел на данной прямой" это бред сивой кобылы
всё, что ты в принципе можешь, это троллинг тупостью и рассуждения про дебилов, ведь ты ещё никогда не порождал ничего иного
так что на этом всё, сегодня ты слился, можешь ещё раз утешиться чем-нибудь вроде "мнения дебила" и пройти туда, где тебе самое место. давай, до следующего раза, посмотрим на что тебя стриггерит ещё
Вот это подрыв.
>на что тебя стриггерит ещё
Но самое забавное что это ты взорвался от уточнения, дебил.
>всё, что ты в принципе можешь
Могу попросить доказательство указанного тобою предположения на счёт строгой (нулевой) вероятности выбора целого числа на действительно прямой. Но вот проблема - ты в прошлый раз ничего не привёл.
Как вот это
>>2131
>>2137
опровергнешь, дебил?
И вообще, здесь вроде математическая тема, а дебил, строящий из себя гуру, не может доказать свои же утверждения. Смешно же. Это эталонный дебил.
>Могу попросить доказательство указанного тобою предположения на счёт строгой (нулевой) вероятности выбора целого числа на действительно прямой
я принёс тебе схему доказательства, если ты видишь где-то ошибку - укажи, где
>И вообще, здесь вроде математическая тема
вот и говори про математику, а не про дебилов
>я принёс тебе схему доказательства
Зачем мне твоя схема? Ты само доказательство принеси, дебил. Вероятность выбрать целое число строго равна нулю? Доказательство в студию, дебил.
>Зачем мне твоя схема?
ах, вот оно в чём дело. оказывается, петуха корёжит от того, что его с ложечки не кормят. а ведь разговоров-то было - и про суть каких-то определений, в которых кого-то обмакивают, и про парадоксы меры Лебега, и дебилы все эти бесчисленные. а оказывается, это всего-то петух-неосилятор опять не осилил что-то
нет уж, дорогой. если ты утверждаешь, что что-то неверно - ты указываешь, что
как вариант, можешь доказать мы знаем, что не можешь результат, опровергающий тот, который обеспокоил тебя вначале; тогда можно будет подискутировать о том, что является правильным
>ряяяяя
Графомания не интересует, дебил.
Доказательство где? А так-то, у меня есть схема, по которой ты умственно неполноценный. Прислать?
я думаю, здесь ты совершенно ясно расписался в своей несостоятельности и всего срача выше. так что давай, до свидания
>я думаю
Ты дебил и это не свойственно тебе.
Не вижу доказательства с твоей стороны. Дал утверждение - доказываешь, дебил.