Двач.hk не отвечает.
Вы видите копию треда, сохраненную 16 января в 02:39.

Скачать тред: только с превью, с превью и прикрепленными файлами.
Второй вариант может долго скачиваться. Файлы будут только в живых или недавно утонувших тредах. Подробнее

Если вам полезен архив М.Двача, пожертвуйте на оплату сервера.
image.png194 Кб, 600x600
Черновик для Latex формул 85801 В конец треда | Веб
Черновик для Latex формул
2 85803
(a) $ \forall x (Px)$ где P некий предикат принимающий один аргумент
(b) $ \forall x (Qx)$ где Q тоже предикат
(c) $ \exists y (Py \land Qy)$

(a) $ \forallx (Px)$ где P некий предикат принимающий один аргумент
(b) $ \forallx (Qx)$ где Q тоже предикат
(c) $ \existsy (Py \land Qy)$
3 85810
∀x(¬Px)
4 85929
$\exists x (Ax \land Bx )$
$\exists x (Ax \rightarrow Bx)$
5 85935
$\forall \varepsilon \geq 0 \exist \delta \geq 0 : |f(x) - a| \leq \varepsilon$
6 85956
Хотите лайфак?
Заходите на любой вопрос на math.stackexchange.com, там внизу есть поле Your Answer. Не нужно быть даже залогиненным, оно там есть. В это поле записываете свою формулу Латех, она под этим полем сразу отображается в обработанном виде. Можно её там править, пока не приобретёт нужный вид.

Единственное, следует избегать значка $\ast$, вместо него писать \ast

Наверняка, есть другие онлайн редакторы для формул, но math.stackexchange.com все знают, регулярно туда заходят
7 85957
>>85956
ну тогда уж overleaf.com - проще и приятнее + нету тараканов специфических для встроенного в сайты теха
8 85958
>>85957
>>85956
просто это создает атмосферу на доске. Или это мешает?
9 85959
>>85958
да нет, норм
я просто думал, вроде помог
10 85962
$\exists x ( Nx \to Ix \to \neg \forall y (Nx \to Ix \to \neg x < y) )$
11 85999
$$\xymatrix{X\ar[rd]_f\ar[rr]^{g}&&{X_k}\ar[ld]^{f_k}\\&Y}$$
12 86007
$\langle vec{x},vec{y} \rangle = V^*$
13 86060
$u_1,...,u_n,u_1\',...,u_n\'$
$u_1...u_n$ и $u_1\'...u_n\'$
изображение.png291 Кб, 900x365
14 86061
$u_1',...,u_n'$
15 86757
$\log_ab$
16 86767
$xyz$
17 88056
$y' = f(x,y)$
18 88115
\[ f(n) =
\begin{cases}
n/2 & \quad \text{if } n \text{ is even}\\
-(n+1)/2 & \quad \text{if } n \text{ is odd}
\end{cases}
\]
19 88116
[ f(n) =
\begin{cases}
n/2 & \quad \text{if } n \text{ is even}\\
-(n+1)/2 & \quad \text{if } n \text{ is odd}
\end{cases}
]
20 88117
\begin{cases}
n/2 & \quad \text{if } n \text{ is even}\\
-(n+1)/2 & \quad \text{if } n \text{ is odd}
\end{cases}

f(n) =
\begin{cases}
n/2 & \quad \text{if } n \text{ is even}\\
-(n+1)/2 & \quad \text{if } n \text{ is odd}
\end{cases}
21 88118
Бла-бла-бла
\[ f(n) =
\begin{cases}
n/2 & \quad \text{if } n \text{ is even}\\
-(n+1)/2 & \quad \text{if } n \text{ is odd}
\end{cases}
\]
бла-бла-бла
22 88119
\[ f(n) =
\begin{cases}
x
y
\end{cases}
\]
23 88120
\[ f(n) =
\begin{cases}
n/2 \\
-(n+1)/2
\end{cases}
\]
24 88121
\begin{cases}
n/2 \\
-(n+1)/2
\end{cases}
25 88123
>>85801 (OP)
[math]$\xymatrix{A \ar[r]^-f \ar[d]^\varphi&B\ar[d]^g\\C\ar[r]^\Psi&D}$[/math]
26 88124
>>88123
$\require{AMScd}$
\begin{CD}
A @>{f}>> B\\
@V{\varphi}VV @V{g}VV\\
C @>{\Psi}>> D
\end{CD}
27 88187
$y' = \frac{y}{x}$
28 88442
>>88124
Как?
30 88986
$x = 0$
31 88987
[math]x = 1[/math]
sage 32 88988
$ x = 2 $
33 90170
\begin{cases}
r_1 \\
r_2
\end{cases}
34 90342
[math] (\forall n\in{\mathbb N})\Big((\forall i\in\{1;\dots;n-1\})P_i\Rightarrow P_n\Big)\Rightarrow(\forall n\in{\mathbb N})P_n [\math]
35 90343

>>61088


Я хотел написать пособие, которое помогло бы людям, далёким от математики, понять её, даже если нет никаких знаний о ней. Хотел показать, что за набором непонятных символов аля

[math] (\forall n\in{\mathbb N})\Big((\forall i\in\{1;\dots;n-1\})P_i\Rightarrow P_n\Big)\Rightarrow(\forall n\in{\mathbb N})P_n [/math]
36 90365
>>90343
У меня тоже подобные идеи были.
37 90376
38 90377
>>90376
$A^2_3$
39 90378
>>90377
S A^2_3 $
40 90379
>>90378
$ A^2_3 $
41 90427
>>85801 (OP)
$\prod_{i \leq m} p(i)^(k_i)$
42 90428
$\prod_{i \leq m} p(i)^k_i$
43 90429
$\prod_{i \leq m} p(i)^{k_i}$
44 90756
$ \bigcup_\alpha(a_\alpha;+\infty)=(inf\:a_\alpha;+\infty) $
45 90900
$H(p1, p2, ...) = -\sum_{n=1}^{\infty}p_n log(p_n)$
46 90915
\begin{align}
\text{mathbf} \; & \mathbf{abcdefgh} \; \mathbf{ABCDEFGH} \; \mathbf{\alpha \beta \gamma \delta}
\\
\text{boldsymbol} \; & \boldsymbol{abcdefgh} \; \boldsymbol{ABCDEFGH} \; \boldsymbol{\alpha \beta \gamma \delta}
\\
\text{bm} \; & \bm{abcdefgh} \; \bm{ABCDEFGH} \; \bm{\alpha \beta \gamma \delta}
\end{align}
47 90921
$f(x) = g(x) \rightarrow k(x) = p(x)$
48 90922
$f(x) \nrightarrow k(x)$
49 90923
$C$
50 90926
>>90921
Только помни, что это не символ функции (абсолютные синонимы: мэппинга, отображения).
Может, тебе нужен mapsto?
$f: x \mapsto y \:\: \Leftrightarrow \:\: y = f(x)$
51 90933
>>90926
Не, ты не понял. $f(x)$ и $g(x)$ это две функции в равенстве, а не область значений функции и область определения функции. $ \rightarrow$ показывает тождественное преобразование
52 90945
$
\begin{equation}
\frac{4(x-3)}{x-3} = 6
\end{equation}
$
53 90946
abobas abobs abob
$\begin{equation} \frac{4(x-3)}{x-3} = 6 \end{equation} $
abo bobas bobbos
54 90947
abobas abobs abob
$\frac{4(x-3)}{x-3} = 6$
abo bobas bobbos
55 91093
>>85801 (OP)
\[n =
\prod_i
p^{a_{i}}_{i}
< 2^{\sum_i ia_{i}}
56 91094
>>91093
$\[n =
\prod_i
p^{a_{i}}_{i}
< 2^{\sum_i ia_{i}}$
57 91229
$2y(y')^3+y''=0$
58 91272
\[0, 1, 2, 3, 4, 5, 6, 7, 8\]
3\sqrt{3}i ?
59 91273
\[3\sqrt{3}i\]
60 91350
$ \overline{\langle u,v \rangle}$
61 91455
\begin{gather}
\displaystyle\underset{ \scriptscriptstyle 3×3 }{[ \hspace{.2ex}\mathcal{A}\hspace{.2ex} ]} \hspace{.1ex}
= \hspace{-0.2ex} \ldots
\end{gather}

Matrix ${[ hspace{.2ex}\mathcal{A}\hspace{.2ex} ]}$ is a~3×3 matrix, because it has 3 rows and 3 columns.
Matrix ${[ hspace{.2ex}\mathcal{B}\hspace{.2ex} ]}$ has 2 rows and 4 columns, so it’s dimension is 2×4.
Matrix ${[ hspace{.2ex}\mathcal{C}\hspace{.2ex} ]}$ is a~column matrix with just one column, and its dimension is 3×1.
And ${[ hspace{.2ex}\mathcal{D}\hspace{.2ex} ]}$ is a~row matrix with dimension 1×6.
62 91457
Matrix ${[ \hspace{.3ex}\mathrm{A}\hspace{.3ex} ]}$ is a~$3×3$ matrix, because it has 3 rows and 3 columns.
Matrix ${[ \hspace{.3ex}\mathrm{B}\hspace{.3ex} ]}$ has 2 rows and 4 columns, so its dimension is $2×4$.
Matrix ${[ \hspace{.3ex}\mathrm{C}\hspace{.3ex} ]}$ is a~column matrix (that is a~matrix with just one column), and its dimension is $3×1$.
And ${[ \hspace{.3ex}\mathrm{D}\hspace{.3ex} ]}$ is a~row matrix with dimension $1×6$.
63 91458
${[ \hspace{.3ex}\mathrm{A}\hspace{.3ex} ]}$ is a~${3{×}3}$ matrix
64 91491
$\langle x y \rangle = \overline{\langle y x \rangle} $
65 91841
$\forall \varepsilon > 0 \exists n>N (x_n-A < \varepsilon)$
66 91843
При адекватной формализации языка первого порядка у тебя такой проблемы не будет. Так как набор символов переменных будет выбран естественно и естественность в частности подразумевает разрешимость этого множества.

В абстрактной формулировке тебе правильно указывают на проблему остановки. По произвольной программе C можно построить программу $C^$ которая запускает C, выводит символ $x_{n+1}$ на n-ом шаге работы C и если $C$ завершила работу, то $С^$ продолжает свою работу сначала выводя $x_0$ а затем в бесконечном цикле все оставшиеся $x_i$. Легко видеть, что $C^$ всегда является валидным алгоритмом перечисляющим счетное число символов и $C^$ перечисляет $x_0$ если и только если $C$ останавливается. Таким $(\cdot)^*$ это сведение проблемы к частному случаю твоей проблемы для проверки, выводит ли $A$ символ $x_0$.
67 92069
\begin{gather}
\| \boldsymbol{a} \| \| \boldsymbol{b} \| \operatorname{cosine} \measuredangle \Bigl( \boldsymbol{a} \widehat{\;\;} \boldsymbol{b} \Bigr)
\\
\| \boldsymbol{a} \| \| \boldsymbol{b} \| \operatorname{cosine} \measuredangle \Bigl( \boldsymbol{a} \widehat{\phantom{w}} \boldsymbol{b} \Bigr)
\\
\| \boldsymbol{a} \| \| \boldsymbol{b} \| \operatorname{cosine} \measuredangle \Bigl( \boldsymbol{a} \widehat{\phantom{W}} \boldsymbol{b} \Bigr)
\end{gather}
68 92124
test
69 92188
$u^{\displaystyle\frac{n}{m}} = \Bigl( u^{(2k+1)n} \Bigr) \! ^{\displaystyle\frac{1}{(2k+1)m}}$
70 92239
\begin{equation}
\begin{array}
\scriptstyle s \\
\scriptstyle i \\
\scriptstyle n
\end{array}
\left( x \right)
\end{equation}
71 92406
$r_\omega$
72 92409
$r_{\omega+1}$
73 92659
$y' = f(x)g(y)$
74 92677
[math]y(x) = y_0 e^{\int\limits_{x_0}^x {a(\xi)d(\xi)}} + e^{\int\limits_{x_0}^x {a(\xi)d(\xi)}}\int\limits_{x_0}^x {b(s) e^{\int\limits_{s}^{x_0} a(\xi)d(\xi)} d(s)}[/math]
75 92870
$A_1, A_2, ..., A_n, ...$ $A := \cup_{i=1}^{\infty} A_i$ $\lim_{m\to\infty}P(\cup_{i=1}^{m} A_i) = P(A)$
76 92990
\begin{gather} \Bigl( x + \frac{b}{2 a} \Bigr)^{\!2} = \frac{b^2 - 4ac}{(2 a)^2} \\ \Bigl| x + \frac{b}{2 a} \Bigr| = \sqrt{ \frac{b^2 - 4ac}{(2 a)^2} } \\ x + \frac{b}{2 a} = \pm \sqrt{ \frac{b^2 - 4ac}{(2 a)^2} } \\ x = \pm \frac{\sqrt{b^2 - 4ac}}{2 a} - \frac{b}{2 a} \end{gather}
77 92995
\begin{gather} ax^2 + bx + c = 0, \:\: a \neq 0 \\ \frac{a}{a} x^2 + \frac{b}{a} x + \frac{c}{a} = 0, \\ x^2 + 2 \frac{1}{2} \frac{b}{a} x + \frac{1}{2^2} \frac{b^2}{a^2} + \frac{c}{a} = \frac{1}{2^2} \frac{b^2}{a^2}, \\ \Bigl( x + \frac{1}{2} \frac{b}{a} \Bigr)^{\!2} = \frac{1}{4} \frac{b^2}{a^2} - \frac{c}{a}, \\ \Bigl( x + \frac{b}{2 a} \Bigr)^{\!2} = \frac{b^2}{4 a^2} - \frac{c}{a} \frac{4a}{4a}, \\ \Bigl( x + \frac{b}{2 a} \Bigr)^{\!2} = \frac{b^2}{4 a^2} - \frac{4ac}{4 a^2}, \\ \Bigl( x + \frac{b}{2 a} \Bigr)^{\!2} = \frac{b^2 - 4ac}{4 a^2}, \\
\Bigl( x + \frac{b}{2 a} \Bigr)^{\!2} = \frac{b^2 - 4ac}{(2 a)^2}, \\ \Bigl| x + \frac{b}{2 a} \Bigr| = \sqrt{ \frac{b^2 - 4ac}{(2 a)^2} }, \\
x + \frac{b}{2 a} = \pm \sqrt{ \frac{b^2 - 4ac}{(2 a)^2} }, \\
x = \pm \frac{\sqrt{b^2 - 4ac}}{\sqrt{(2 a)^2}} - \frac{b}{2 a}, \\
x = \pm \frac{\sqrt{b^2 - 4ac}}{| 2 a |} - \frac{b}{2 a}, \\
x = \frac{\pm \sqrt{b^2 - 4ac}}{2 | a |} - \frac{b}{2 a}.
\end{gather}
78 92996
\begin{gather} ax^2 + bx + c = 0, \:\: a \neq 0, \\[.5em] \frac{a}{a} x^2 + \frac{b}{a} x + \frac{c}{a} = 0, \\[.2em] x^2 + 2 \cdot \frac{1}{2} \frac{b}{a} \cdot x + \frac{1}{2^2} \frac{b^2}{a^2} + \frac{c}{a} = \frac{1}{2^2} \frac{b^2}{a^2}, \\[.2em] \Bigl( x + \frac{1}{2} \frac{b}{a} \Bigr)^{\!2} = \frac{1}{4} \frac{b^2}{a^2} - \frac{c}{a}, \\[.2em] \Bigl( x + \frac{b}{2 a} \Bigr)^{\!2} = \frac{b^2}{4 a^2} - \frac{c}{a} \frac{4a}{4a}, \\[.2em] \Bigl( x + \frac{b}{2 a} \Bigr)^{\!2} = \frac{b^2}{4 a^2} - \frac{4ac}{4 a^2}, \\[.2em] \Bigl( x + \frac{b}{2 a} \Bigr)^{\!2} = \frac{b^2 - 4ac}{4 a^2}, \\[.2em] \Bigl( x + \frac{b}{2 a} \Bigr)^{\!2} = \frac{b^2 - 4ac}{(2 a)^2}, \\[.2em] \Bigl| x + \frac{b}{2 a} \Bigr| = \sqrt{ \frac{b^2 - 4ac}{(2 a)^2} }, \\[.2em] x + \frac{b}{2 a} = \pm \sqrt{ \frac{b^2 - 4ac}{(2 a)^2} }, \\[.2em] x = \pm \frac{\sqrt{b^2 - 4ac}}{\sqrt{(2 a)^2}} - \frac{b}{2 a}, \\[.2em] x = \pm \frac{\sqrt{b^2 - 4ac}}{| 2 a |} - \frac{b}{2 a}, \\[.2em] x = \frac{\pm \sqrt{b^2 - 4ac}}{2 | a |} - \frac{b}{2 a}. \end{gather}
79 93041
$(\frac{a_1}{b_1}, \frac{a_2}{b_2},\frac{a_3}{b_3}...) \mapsto \frac{p_{1}^{a_1}p_{2}^{a_2}p_{3}^{a_3}... }{p_{1}^{b_1}p_{2}^{b_2}p_{3}^{b_3}...}$
80 93065
$\int{ \displaystyle\frac{A(x)dx}{B(x)\sqrt{S(x)}} }$
81 93143
82 93176
$D: V_1 \times V_2 \times...\times V_n \mapsto F$
83 93185
$detA = \sum_{\sigma \in S_{n} \varepsilon(\sigma) \prod_{i=1}^{n}A_{i\sigma(i)} } $
84 93187
$detA = \sum_{\sigma \in S_{n}} \varepsilon(\sigma) \prod_{i=1}^{n}A_{i\sigma(i)} } $
85 93188
$detA = \sum_{\sigma \in S_{n}} \varepsilon(\sigma) \prod_{i=1}^{n}A_{i\sigma(i)} } $
86 93189
$detA = \sum_{\sigma \in S_{n}} \varepsilon(\sigma) \prod_{i=1}^{n}A_{i\sigma(i) }$
87 93256
>>85801 (OP)
\lim\limits_{x \to 2} \1/|x-2| = \infty
88 93266
${f_i}_n$.
89 93267
$(e_i)_n$
90 93269
$\sum_{i=1}^{n}A_{ii} \mapsto \sum_{i} \sum_{j} C_{ij}^{-1}A_{ji}$
91 93270
$\sum_{i=1}^{n}A_{ii} \mapsto \sum_{i}^{n} \sum_{j}^{n} C_{ij}^{-1}A_{ji}$
sage 92 93456
$\{ b \cdot x| x \in Z \}$
93 93479
>>93456
\mathbb{Z}
$\mathbb{Z}$

$b \cdot x | x \in \mathbb{Z}$
sage 94 93508
$K_{v} = K_{v_\text{М}}\cdot K_{v_\text{И}}\cdot K_{v_\text{П}}\cdot K_{v_\text{С}}\cdot K_{v_\text{Ф}}\cdot K_{v_\text{О}}\cdot K_{v_\text{В}}\cdot K_{v_{\varphi}}$
95 93527
>>93479
благодарю
96 93532
>>93479
\mid
\mathbin{|}
\,
\hspace{.5ex}
\hspace{.5em}

$b \cdot x \mid x \in \mathbb{Z}$
$b \cdot x \mathbin{|} x \in \mathbb{Z}$
$b \cdot x \, | \, x \in \mathbb{Z}$
$b \cdot x \hspace{.5ex} | \hspace{.5ex} x \in \mathbb{Z}$
$b \cdot x \hspace{.5em} | \hspace{.5em} x \in \mathbb{Z}$
97 93767
[math]b_{n} = 1 + n \cdot b_{n-1}[/math]
[math]b_{0} = 2[/math]
98 93768
$b_{n} = 1 + n \cdot b_{n-1}$
99 93840
[math]\int {\frac{1}{{1 + \sqrt[3]{x}}}} [/math]
100 93841
[math]3\int {\frac{{{t^2}}}{{t + 1}}dt = \frac{{3{t^2}}}{2} - 3t + \ln \left| {t + 1} \right|} [/math]
101 93842
[math]t = \sqrt[3]{x}[/math]
102 93847
$ \frac{dt}{dx} = \frac{1}{3x^{2/3}} = \frac{1}{3t^2} \\ $
$ dx = 3t^2 dt \\ $
$ \int \frac{dx}{1+x^{1/3}}= \int \frac{3t^2dt}{1+t} = 3 \int \frac{t^2dt}{1+t} = 3 \int t - \frac{t}{1+t}dt = 3 ( \int t dt - \int \frac{tdt}{1+t} ) = 3 ( \int t dt - \int (1 - \frac{1}{1+t}) dt) = \\ $
$ = 3(\int t dt - \int 1dt + \int \frac{d(1+t)}{1+t}) = \frac{3}{2}t^2 - 3t + \ln|1+t| + C = \\ $
$ = \frac{3}{2}x^{2/3} - 3x^{1/3} + \ln|1+x^{1/3}| + C $
103 93869
a_{ij}
104 93870
[math]a_{ij}[/math]
105 94031
[math]\[x = {t^2} + 1\][/math]
106 94032
[math]\[x = {t^2} + 1\][/math]*
107 94033
[math]x = {t^2} + 1[/math]
108 94050
1
109 94103
На дваче рэндэр латекса работает или только в math ?
f $\sqrt[\delta ]{{\frac{{{a^b}}}{c}}}$
f \[\sqrt[\delta ]{{\frac{{{a^b}}}{c}}}]\
f \(\sqrt[\delta ]{{\frac{{{a^b}}}{c}}})\
110 94113
Ого, и давно тут латех вкрутили? Уважаемо моё почтение
111 94465
>>85801 (OP)
$ \iiint div(F) dV $
112 94487
\(\Feyn{fs f gl f glu f fs}\)
113 94576
\frac{x_{n+1}}{x_{n}}
114 94577
\frac{x_{n+1}}{x_{n}}
115 94578
\frac{x_{n+1}}{x_{n}}
116 94579
frac{x_{n+1}}{x_{n}}
117 94798
\[
m_{воров}
\]
118 94799
$m_{воров}$
119 94800
$m_{воров}=\frac{F_{воров}}{a_{воров}}$
120 94819
$$hello$$
121 95392
$Hello guys, how are you doing?

I've been doing some finance math and stuck at one moment.

Let's we have a price of a stock S(0) at the time 0. We are dividing the continuous timeline between 0 and N into discrete steps 0, 1, ... N.

At each step the price S(n) can go up and down with corresponding logarithmic returns ln(1+u) and ln(1+d). Thus at each step we have a variable k(n) which is distributed as Bernoulli distribution with two outcomes:

\begin{equation}
k(n) = \left\{
\begin{array}{ll}
ln(1+u) & \quad p\\
ln(1+d) & \quad 1-p
\end{array}
\right.
\end{equation
}

where p=1-p

So if we consider all steps, we get a binomial tree, where each brunch represents possible movement of the stock's price S(0) up to S(N).

Now let's consider a random variable P = k(0) + ... + k(N). Each k(n) is i.i.d.

Its \mu is \sum_{n=1}^{N} E(k(n)) = N \cdot E(k(n)).
Its \sigma^2 is \sum_{n=1}^{N} var(k(n)) = N \cdot var(k(n))

Let's say that \tau = \frac{1}{N}

Hence, mean of each Bernoulli trial \mu{k(n)} is \mu \tau and \sigma of each trial is \sigma \sqrt{\tau}.

And here is a weird part - author then concludes that:

ln(1+u) = \mu\tau + \sigma\sqrt{\tau}
ln(1+u) = \mu\tau - \sigma\sqrt{\tau}

And it is not true i guess. According to his logic

ln(1+u) = mean + standard dev = p ln(1+u) + p ln(1+d) + p (ln(1+u)- \mu\tau)^2 + p(ln(1+d)-\mu\tau)^2

and the right part of the expression cannot be boiled down down to ln(1+u),because:
p ln(1+u) + p ln(1+d) + p (ln(1+u)- \mu\tau)^2 + p(ln(1+d)-\mu\tau)^2 =\= ln(1+u)

$
121 95392
$Hello guys, how are you doing?

I've been doing some finance math and stuck at one moment.

Let's we have a price of a stock S(0) at the time 0. We are dividing the continuous timeline between 0 and N into discrete steps 0, 1, ... N.

At each step the price S(n) can go up and down with corresponding logarithmic returns ln(1+u) and ln(1+d). Thus at each step we have a variable k(n) which is distributed as Bernoulli distribution with two outcomes:

\begin{equation}
k(n) = \left\{
\begin{array}{ll}
ln(1+u) & \quad p\\
ln(1+d) & \quad 1-p
\end{array}
\right.
\end{equation
}

where p=1-p

So if we consider all steps, we get a binomial tree, where each brunch represents possible movement of the stock's price S(0) up to S(N).

Now let's consider a random variable P = k(0) + ... + k(N). Each k(n) is i.i.d.

Its \mu is \sum_{n=1}^{N} E(k(n)) = N \cdot E(k(n)).
Its \sigma^2 is \sum_{n=1}^{N} var(k(n)) = N \cdot var(k(n))

Let's say that \tau = \frac{1}{N}

Hence, mean of each Bernoulli trial \mu{k(n)} is \mu \tau and \sigma of each trial is \sigma \sqrt{\tau}.

And here is a weird part - author then concludes that:

ln(1+u) = \mu\tau + \sigma\sqrt{\tau}
ln(1+u) = \mu\tau - \sigma\sqrt{\tau}

And it is not true i guess. According to his logic

ln(1+u) = mean + standard dev = p ln(1+u) + p ln(1+d) + p (ln(1+u)- \mu\tau)^2 + p(ln(1+d)-\mu\tau)^2

and the right part of the expression cannot be boiled down down to ln(1+u),because:
p ln(1+u) + p ln(1+d) + p (ln(1+u)- \mu\tau)^2 + p(ln(1+d)-\mu\tau)^2 =\= ln(1+u)

$
122 95393
$Hello guys, how are you doing?

I've been doing some finance math and stuck at one moment.

Let's we have a price of a stock S(0) at the time 0. We are dividing the continuous timeline between 0 and N into discrete steps 0, 1, ... N.

At each step the price S(n) can go up and down with corresponding logarithmic returns ln(1+u) and ln(1+d). Thus at each step we have a variable k(n) which is distributed as Bernoulli distribution with two outcomes:

k(n) = \left\{
\begin{array}{ll}
ln(1+u) & \quad p\\
ln(1+d) & \quad 1-p
\end{array}
\right.

where p=1-p

So if we consider all steps, we get a binomial tree, where each brunch represents possible movement of the stock's price S(0) up to S(N).

Now let's consider a random variable P = k(0) + ... + k(N). Each k(n) is i.i.d.

Its \mu is \sum_{n=1}^{N} E(k(n)) = N \cdot E(k(n)).
Its \sigma^2 is \sum_{n=1}^{N} var(k(n)) = N \cdot var(k(n))

Let's say that \tau = \frac{1}{N}

Hence, mean of each Bernoulli trial \mu{k(n)} is \mu \tau and \sigma of each trial is \sigma \sqrt{\tau}.

And here is a weird part - author then concludes that:

ln(1+u) = \mu\tau + \sigma\sqrt{\tau}
ln(1+u) = \mu\tau - \sigma\sqrt{\tau}

And it is not true i guess. According to his logic

ln(1+u) = mean + standard dev = p ln(1+u) + p ln(1+d) + p (ln(1+u)- \mu\tau)^2 + p(ln(1+d)-\mu\tau)^2

and the right part of the expression cannot be boiled down down to ln(1+u),because:
p ln(1+u) + p ln(1+d) + p (ln(1+u)- \mu\tau)^2 + p(ln(1+d)-\mu\tau)^2 =\= ln(1+u)

$
122 95393
$Hello guys, how are you doing?

I've been doing some finance math and stuck at one moment.

Let's we have a price of a stock S(0) at the time 0. We are dividing the continuous timeline between 0 and N into discrete steps 0, 1, ... N.

At each step the price S(n) can go up and down with corresponding logarithmic returns ln(1+u) and ln(1+d). Thus at each step we have a variable k(n) which is distributed as Bernoulli distribution with two outcomes:

k(n) = \left\{
\begin{array}{ll}
ln(1+u) & \quad p\\
ln(1+d) & \quad 1-p
\end{array}
\right.

where p=1-p

So if we consider all steps, we get a binomial tree, where each brunch represents possible movement of the stock's price S(0) up to S(N).

Now let's consider a random variable P = k(0) + ... + k(N). Each k(n) is i.i.d.

Its \mu is \sum_{n=1}^{N} E(k(n)) = N \cdot E(k(n)).
Its \sigma^2 is \sum_{n=1}^{N} var(k(n)) = N \cdot var(k(n))

Let's say that \tau = \frac{1}{N}

Hence, mean of each Bernoulli trial \mu{k(n)} is \mu \tau and \sigma of each trial is \sigma \sqrt{\tau}.

And here is a weird part - author then concludes that:

ln(1+u) = \mu\tau + \sigma\sqrt{\tau}
ln(1+u) = \mu\tau - \sigma\sqrt{\tau}

And it is not true i guess. According to his logic

ln(1+u) = mean + standard dev = p ln(1+u) + p ln(1+d) + p (ln(1+u)- \mu\tau)^2 + p(ln(1+d)-\mu\tau)^2

and the right part of the expression cannot be boiled down down to ln(1+u),because:
p ln(1+u) + p ln(1+d) + p (ln(1+u)- \mu\tau)^2 + p(ln(1+d)-\mu\tau)^2 =\= ln(1+u)

$
123 95636
$\rho_{i}(x) \geq r_{min}$
124 96568
>>85801 (OP)
$x = e^{x^sin(x^2) - 1/\sqrt{x}}$
125 96569
>>96568
$x = e^{x^{sin(x^2)} - 1/\sqrt{x}}$ конечно же
126 96601
127 96985
test m^2n
128 97018
тест
$ x^2 \in \mathbb{R} $
129 97200
$$ \begin{bmatrix}
A & B \\
C & D
\end{bmatrix} $$
130 97201
$$ \begin{matrix}
A & B \\
C & D
\end{matrix}
\cdot
\begin{matrix}
0 & -1_n \\
1_n & 0
\end{matrix}
\cdot
\begin{matrix}
D & -B \\
-C & A
\end{matrix}
=
\begin{matrix}
0 & -1_n \\
1_n & 0
\end{matrix}
$$
131 97202
$$ \begin{pmatrix}
A & B \\
C & D
\end{pmatrix}
\cdot
\begin{pmatrix}
0 & -1_n \\
1_n & 0
\end{pmatrix}
\cdot
\begin{pmatrix}
D & -B \\
-C & A
\end{pmatrix}
=
\begin{pmatrix}
0 & -1_n \\
1_n & 0
\end{pmatrix}
$$
132 97277
[math] /!)-&~n/{"isRoot":false,"isTextMode":false,"isTabularCellsSelected":false,"isPureText":false,"insideInlineMath":false,"lines":[{"blocks":[{"text":"a"},{"text":"\\power-index","type":"composite","elements":{"powerValue":{"lines":[{"blocks":[{"text":"2"}]}]},"indexValue":{"lines":[{"blocks":[{"text":"n"}]}]}}},{"text":"="},{"text":"\\frac","type":"composite","elements":{"value":{"lines":[{"blocks":[{"text":"x"},{"text":"\\power","type":"composite","elements":{"powerValue":{"lines":[{"blocks":[{"text":"2"}]}]}}}]}]},"sub1":{"lines":[{"blocks":[{"text":"y"},{"text":"\\power","type":"composite","elements":{"powerValue":{"lines":[{"blocks":[{"text":"2"}]}]}}},{"text":"+"},{"text":"\\sum","type":"composite","elements":{"from":{"lines":[{"blocks":[{"text":"n-1"}]}]},"to":{"lines":[{"blocks":[{"text":"1"}]}]}}},{"text":"a"},{"text":"\\power-index","type":"composite","elements":{"powerValue":{"lines":[{"blocks":[{"text":"2"}]}]},"indexValue":{"lines":[{"blocks":[{"text":"i"}]}]}}}]}]}}}]}],"rootEditorId":"321241621323","inlineMathDisplayStyle":null} [/math]
133 97278
$ /!)-&~n/{"isRoot":false,"isTextMode":false,"isTabularCellsSelected":false,"isPureText":false,"insideInlineMath":false,"lines":[{"blocks":[{"text":"a"},{"text":"\\power-index","type":"composite","elements":{"powerValue":{"lines":[{"blocks":[{"text":"2"}]}]},"indexValue":{"lines":[{"blocks":[{"text":"n"}]}]}}},{"text":"="},{"text":"\\frac","type":"composite","elements":{"value":{"lines":[{"blocks":[{"text":"x"},{"text":"\\power","type":"composite","elements":{"powerValue":{"lines":[{"blocks":[{"text":"2"}]}]}}}]}]},"sub1":{"lines":[{"blocks":[{"text":"y"},{"text":"\\power","type":"composite","elements":{"powerValue":{"lines":[{"blocks":[{"text":"2"}]}]}}},{"text":"+"},{"text":"\\sum","type":"composite","elements":{"from":{"lines":[{"blocks":[{"text":"n-1"}]}]},"to":{"lines":[{"blocks":[{"text":"1"}]}]}}},{"text":"a"},{"text":"\\power-index","type":"composite","elements":{"powerValue":{"lines":[{"blocks":[{"text":"2"}]}]},"indexValue":{"lines":[{"blocks":[{"text":"i"}]}]}}}]}]}}}]}],"rootEditorId":"321241621323","inlineMathDisplayStyle":null} $
134 97279
$ a_{n}^{2} =\frac{x^{2}}{y^{2} +\sum _{1}^{n-1} a_{i}^{2}} $
135 97280
[math] a_{n}^{2} =\frac{x^{2}}{y^{2} +\sum _{1}^{n-1} a_{i}^{2}} [/math]
136 98115
починили или нет
$\mathbb{R}$
[math]x^y[/math]
137 98130
>>98115
Нет.
138 98859
Let $a = |\mathbf{r_2} - \mathbf{r_3}|, b = |\mathbf{r_3} - \mathbf{r_1}|, c = |\mathbf{r_1} - \mathbf{r_2}|$. a=| mathbfr2−r3|,b=| mathbfr3−r1|,c=| mathbfr1− mathbfr2|. Then the position vector $\mathbf{r}$ of the incenter is given by \begin{align} \mathbf{r} = \frac{a\mathbf{r_1} +b\mathbf{r_2}+c\mathbf{r_3}}{a+b+c} \end{align} mathbfr инцентра задается \begin {align} \mathbf {r} = \frac {a\ mathbf {r_1} +b \mathbf {r_2} + c \ mathbf {r_3}} {a + b + c}\end{выровнять}a=|r2−r3|,b=|r3−r1|,c=|r1−r2|. Then the position vector r of the incenter is given by
139 98890
Подскажите пожалуйста как сделать стрелочку с волной как на Пик1??

\stackrel{\backsim}{\rightarrow} даёт Пик2, но мне не нравится как это выглядит, очень не красиво
140 99240
$\mathrm{F}(x, y)\triangleq \left\{ \begin{array}{ll} \mathrm{min}\left(x, y\right), & \mathrm{if} \ 0\le \mathrm{min}\left(x, y\right) \le 1 \\ 0, & \mathrm{if} \ \mathrm{min}\left(x, y\right)<0 \\ 1, & \mathrm{if} \ \mathrm{min}\left(x, y\right)>1 \end{array} \right.$
141 99947
ну пофиксили там, не
я из-за нерабочего латеха на борду практически и не захожу теперь
$\beta_{2}$
142 99981
>>98890
Тоже когда-то хотел, потом стал просто использовать \xrightarrow{\sim}. Теперь так нравится.
Можно так:
\overset{\raisebox{0.25ex}{$\sim\hspace{0.2ex}$}}{\smash{\longrightarrow}}
Или шрифт менять, чтобы головки у стрелок были поменьше.
143 101434
Holder's inequality is a fundamental result in mathematics that provides an upper bound for the product of two functions when their exponents are conjugate. It can be derived using the convexity of the function $x\mapsto x^p$ on the interval $[0,\infty)$, where $p>1$ is the exponent of one of the functions in the product.

To see how convexity plays a role, let $f$ and $g$ be non-negative measurable functions defined on a measure space $(X,\mu)$. Holder's inequality states that if $p$ and $q$ are conjugate exponents, i.e., $\frac{1}{p}+\frac{1}{q}=1$, then

,
where $|f|_p=(\int_X |f|^p d\mu)^{1/p}$ is the $L^p$ norm of $f$.

To derive this inequality using convexity, we first observe that the function $x\mapsto x^{1/p}$ is convex on $[0,\infty)$ since its second derivative is $(1-p)/p^2 x^{1/p-2}$, which is non-negative for $p>1$ and $x\geq 0$.

Using this fact, we can apply the convexity of the function $x\mapsto x^{p/q}$ to the integral of the product $fg$ as follows:

\begin{align}
\int_X fg \ d\mu &= \int_X (f^{1/p}g^{1/q})^p (f^{1/p}g^{1/q})^{q-p} \ d\mu \
&\leq \left(\int_X f^{p/q} \ d\mu\right)^{q/p} \left(\int_X g^{p/(p-q)} \ d\mu\right)^{(p-q)/p} \
&= |f|_p^q |g|_q^{p-q}.
\end{align
}

Here, we used the fact that $q-p = \frac{-p}{q-p}$, and the inequality follows from the convexity of $x\mapsto x^{p/q}$ and the fact that $p/q+1/(p-q)=1$.

Thus, we have obtained the Holder's inequality using the convexity of the function $x\mapsto x^p$ and its inverse function $x\mapsto x^{1/p}$, which allow us to apply the general convexity inequality to the integrals of the powers of $f$ and $g$.
144 101442
>>85801 (OP)
[math]\mathcal{A_1}=\{"|"\}[\math]
145 101443
>>101442
$$\mathcal{A_1}=\{"|"\}$$
146 101593
$\sum^{102}_{m=3} \binom{m}{3}^{-1}$
147 101676
$a^2 + \sqrt{b}$
sage 148 101820
(a + b)^{10}= \frac{10ab}{1}(\frac{9ab}{2}(\frac{8ab}{3}(\frac{7ab}{4}(\frac{6ab}{5} + a^{2} + b^{2}) + a^{4} + b^{4})+a^{6} + b^{6})+a^{8} + b^{8})+a^{10} + b^{10}
sage 149 101821
\[(a + b)^{10}= \frac{10ab}{1}(\frac{9ab}{2}(\frac{8ab}{3}(\frac{7ab}{4}(\frac{6ab}{5} + a^{2} + b^{2}) + a^{4} + b^{4})+a^{6} + b^{6})+a^{8} + b^{8})+a^{10} + b^{10}\]
sage 150 101822
\[(a + b)^{10}= \frac{10ab}{1}(\frac{9ab}{2}(\frac{8ab}{3}(\frac{7ab}{4}(\frac{6ab}{5} + a^{2} + b^{2}) + a^{4} + b^{4})+a^{6} + b^{6})+a^{8} + b^{8})+a^{10} + b^{10}\]

\[(a + b)^{n}= \frac{nab}{1}(\frac{(n-1)ab}{2}...(\frac{(n+p+2)ab}{n-p}+a^{2-p} + b^{2-p})+a^{4-p} + b^{4-p})...)+a^{n} + b^{n}\]
151 101835
>>85801 (OP)
$\alpha! + \\
& \Gamma(\delta^{\sigma}) + \\
& \phi$

$\Sigma + \\
\Delta + \\
\Phi$
sage 152 101838
>>101835
http://primat.org/mathred/mathred.html тебе нужно в этот сайт пихнуть, чтоб он слеши в начале-конце присунул
153 102141
[math]\left\[\frac{k(k+1)}{2}\right\]^2 + (k+1)^3 = \frac{k^2 (k+1)^2}{4} + (k+1)^2 (k+1) = (k+1)^2 \left\(\frac{k^2}{4} + k + 1\right\)[/math]
154 102215
$\dfrac{dy}{dx} = \dfrac{1-x}{y}$
155 102216
Ты имеешь в виду

$\dfrac{dy}{dx} = \dfrac{1 - x}{y}$

или

$\dfrac{dy}{dx} = 1 - \dfrac{x}{y}$?

Потому что в первом случае разделение переменных работает:

$\int y \ dy = \int (1 - x) \ dx$

, а во втором случае разделить переменные не выйдет - оно является однородным, поэтому нужно будет ввести подстановку.
156 102559
$$y_{a}=10\cdot a^{-\frac{a}{2a}}\left|1-e^{-\frac{5^{\frac{1}{a}}\left(x-a\right)}{25}}\right|$$
157 102560
y_{a}=10\cdot a^{-\frac{a}{2a}}|1-e^{-\frac{5^{\frac{1}{a}}\left(x-a\right)}{25}}|
158 102561
$$y_{a}=10\cdot a^{-\frac{a}{2a}}|1-e^{-\frac{5^{\frac{1}{a}}\left(x-a\right)}{25}}|$$
159 102702
\(\bigcup_{i \in I}A_i = \{x: \exists x \in A_i\}\)
sage 160 102703
$$\bigcup_{i \in I}A_i = \{x: \exists x \in A_i\}$$
161 103186
$$\textit{Govno iz zhopy}$$
162 103198
>>103186
Лютая формула, теория мамаши опа
163 104188
$$ \int test dx $$
164 104189
$ \int test dx $
165 104190
[math] \int test dx [/math]
166 104582
$2m-m^2-1+n^2$
167 104583
168 106259
$$\mathbb{R}$$
169 108294
$\sqrt[\leftroot{10} \uproot{5} 6]{27x^3}$
170 109018
testtest
here is $\latex$ testtest

> $\latex$


vtest $$\latex$$ vtest
171 109530
[math]
$$
\forall \sigma \in S{_n} \;\;\; \sigma=\sigma{_1}\circ \dots\circ\sigma{_k} \;\;\text{произведение транспозиции}
$$
[/math]
172 109531
[math]\forall \sigma \in S{_n} \;\; \sigma=\sigma{_1}\circ \dots\circ\sigma{_k}[/math] произведение транспозиции
173 109721
\frac{1}{2}
174 109722
$\frac{ℎ}{p}$
175 110541
$$
\frac{2\sqrt{3 - a^2}}{a} = m
\frac{1}{a} + \frac{\sqrt{3 - a^2}}{a} = n
$$

$m$, получим $a = \frac{1}{n - \frac{m}{2}}$

$\frac{1}{n - \frac{\sqrt{3 - a^2}}{a}} = \frac{1}{n - \frac{m}{2}} = a$
176 110542
$$
\frac{2\sqrt{3 - a^2}}{a} = m \\
\frac{1}{a} + \frac{\sqrt{3 - a^2}}{a} = n
$$
177 110583
$\lim_{x \to \infty} (4 + \frac{1}{\infty})$
$\lim_{x \to \infty} 4 + \lim_{x \to \infty} \frac{1}{\infty})$
178 110584
179 110585
$\lim_{x \to \infty} (4 + \frac{1}{\infty})=
\lim_{x \to \infty} 4 + \lim_{x \to \infty} \frac{1}{x}=
4 + 0 = 4$
sage 180 113273
>>85801 (OP)
[math]f1 = 0 \& f3 = 1[/math]
[math]f( i + 1 )3 = ( i + 1 ) + \sum_{k = 1}^i\{f( k + 1 )3 - [ fk3 + f3 ][/math]
sage 181 113274
>>85801 (OP)
[math]f1 = 0 \& f3 = 1[/math]
[math]f( i + 1 )3 = ( i + 1 ) + \sum_{k = 1}^i\{f( k + 1 )3 - [ fk3 + f3 ]\}[/math]
sage 182 113275
>>85801 (OP)
[math]f1 = 0 \quad \& \quad f3 = 1[/math]
[math]f( i + 1 )3 = ( i + 1 ) + \sum_{k = 1}^i\{ \quad f( k + 1 )3 - [ \quad fk3 + f3 \quad ] \quad \}[/math]
sage 183 113276
>>85801 (OP)
[math]f1 = 0 \quad \& \quad f3 = 1[/math], после по индукции доказал, что [math]f( i + 1 )3 = ( i + 1 ) + \sum_{k = 1}^i\{ \quad f( k + 1 )3 - [ fk3 + f3 ] \quad \}[/math]
184 115476
$k1k2k3...kn$
185 115477
$k_1k_2k_3...k_n$
186 115479
$k_n-1$
187 115480
$k_{n-1}$
188 115481
$\overlinek_1k_2k_3...k_{n-1}k_n$.
189 115482
$\overline{k_1k_2k_3...k_{n-1}k_n}$.
190 115519
[math]62 \binom{8}{2} 6160595857*56[/math]
191 115768
[math]/sqrt {i} ^ 4[/math]
[math]/sqrt {i^4}[/math]
192 115769
[math]\sqrt{i^4}[/math]
[math]\sqrt {i}^4[/math]
193 115770
$$ \sqrt {i^4} $$
$$ \sqrt {i}^4 $$
194 115771
$ \frac{77}{99} $
195 115772
[math]\sqrt{i^4}\neq\sqrt{i}^4[/math]
196 115773
$\sqrt{i^4}\neq\sqrt{i}^4$
197 115778
$ -\frac{sqrt{2}}{2}-i\frac{sqrt{2}}{2} $
198 115779
$ -\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2} $
199 115784
$-1$
200 115795
$(a^b)^c=(a^c)^b=a^(b*c)$
201 115796
$a^((b*c))$
202 115797
$a^{(b \times c)}$
203 115798
204 115800
$1/frac {n}$
205 115801
$1\frac {n}$
206 115802
$1 \frac {n}$
207 115803
$\frac {1}{n}$
208 115804
$1^{\frac {1}{10}}$
209 115805
$1^{{10} \times {\frac {1}{10}}}=1^1=1$
210 115806
$1^{10}=1; (1^{10})^{\frac {1}{10}}=1^{\frac {1}{10}}$
211 115809
$a$
$а$
212 115811
$\sfrac{7}{11}$
213 115812
>>115811
Не умеет?
214 115813
$\frac{7}{11}$
215 115814
$a^{b \times c}$
216 115827
$b^n=a$
217 115975
[math] [ A = ( A \cap B ) \cup ( A \setminus B ) ] \& [ ( A \cap B ) \cap ( A \setminus B ) = \emptyset ] [/math]

[math]\textup{[(d)} \to \textup{(e)]}[/math]
218 115979
[math] [ A = ( A \cap B ) \cup ( A \setminus B ) ] \& [ ( A \cap B ) \cap ( A \setminus B ) = \varnothing ] [/math]

[math]\mathrm{[(d)} \to \mathrm{(e)]}[/math]
219 115997
q^N=Q^{-N}
x
220 115998
\[a\] nnnnn, \[1/f^{A}=H^{-d}\] mmmmmmmmmmmmmmmmм \[d\]
221 116001
>>115998
$\[a\]$ nnnnn, $\[1/f^{A}=H^{-d}\]$ mmmmmmmmmmmmmmmmм $\[d\]$
222 116002
>>116001
>>115998
$a$ nnnnn, $1/f^{A}=H^{-d}$ mmmmmmmmmmmmmmmmм $d$
223 116013
>>85801 (OP)
[math]sout{frac{b}{a}}[/math]
224 116898
$\mathbb{R}^{3}$
225 117497
$$\forall \epsilon > 0 \exists \delta: \forall |x-x_0| < \delta \Lightarrow |f(x) - A| < \epsilon$$
sage 226 118202
1\ =\ 0\bigm(a+b)=a^2+b^2
sage 227 118203
$${{(a+b)^2=a^2+b^2}}$$
sage 228 118204
$${(a+b)^2=a^2+b^2}$$
Обновить тред
Двач.hk не отвечает.
Вы видите копию треда, сохраненную 16 января в 02:39.

Скачать тред: только с превью, с превью и прикрепленными файлами.
Второй вариант может долго скачиваться. Файлы будут только в живых или недавно утонувших тредах. Подробнее

Если вам полезен архив М.Двача, пожертвуйте на оплату сервера.
« /math/В начало тредаВеб-версияНастройки
/a//b//mu//s//vg/Все доски