Этого треда уже нет.
Это копия, сохраненная 6 января 2021 года.

Скачать тред: только с превью, с превью и прикрепленными файлами.
Второй вариант может долго скачиваться. Файлы будут только в живых или недавно утонувших тредах. Подробнее

Если вам полезен архив М.Двача, пожертвуйте на оплату сервера.
Очередной тред про хипстерские технологии, которые 1902436 В конец треда | Веб
Очередной тред про хипстерские технологии, которые не работают

Я ничего не понимаю, что делать?
Вкатывальщики импортят slesarplow as sp по туториалам (хотя сейчас актуальнее pytorch)
Толковые качают из репозитория awesome-XXXX на гитхабе проект какого-то китайца, меняют фамилию и получают $10M инвестиций как стартап.
Умные смотрят prerequisites на https://see.stanford.edu/Course/CS229 и http://cs231n.stanford.edu/
Остальные сидят ИТТ

Какая математика используется?
В основном линейная алгебра, теорвер, матстат, базовый матан и matrix calculus

Как работает градиентный спуск?
https://cs231n.github.io/optimization-2/

Почему python?
Исторически сложилось

Можно не python?
Никого не волнует, где именно ты натренируешь свою гениальную модель. Но при серьезной работе придется изучать то, что выкладывают другие, а это будет, скорее всего, python, если работа последних лет

Что почитать для вкатывания?
http://www.deeplearningbook.org/
Николенко "Глубокое обучение" - на русском, есть примеры, но меньше охват материала
Франсуа Шолле - Глубокое обучение на Python

В чем практиковаться нубу?
http://www.deeplearning.net/tutorial/
https://www.hackerrank.com/domains/ai
https://github.com/pytorch/examples
https://github.com/ChristosChristofidis/awesome-deep-learning#tutorials

Где набрать первый самостоятельный опыт?
https://www.kaggle.com/ | http://mltrainings.ru/
Стоит отметить, что спортивный deep learning отличается от работы примерно так же, как олимпиадное программирование от настоящего. За полпроцента точности в бизнесе борятся редко, а в случае проблем нанимают больше макак для разметки датасетов. На кагле ты будешь вилкой чистить свой датасет, чтобы на 0,1% обогнать конкурента.

Где работать?
https://www.indeed.com/q-deep-learning-jobs.html
Вкатывальщики могут устроиться программистами и дальше попроситься в ML-отдел

Есть ли фриланс в машобе?
Есть, https://www.upwork.com/search/jobs/?q=machine+learning
Но прожить только фриланся сложно, разве что постоянного клиента найти, а для этого нужно не быть тобой

Где узнать последние новости?
https://www.reddit.com/r/MachineLearning/
http://www.datatau.com/
https://twitter.com/ylecun
На реддите также есть хороший FAQ для вкатывающихся

Где посмотреть последние статьи?
http://www.arxiv-sanity.com/
https://paperswithcode.com/
https://openreview.net/
Версии для зумеров: https://www.youtube.com/channel/UCZHmQk67mSJgfCCTn7xBfew

Количество статей зашкваливающее, поэтому все читают только свою узкую тему и хайповые статьи, упоминаемые в блогах, твиттере, ютубе и телеграме, топы NIPS и прочий хайп. Есть блоги, где кратко пересказывают статьи, даже на русском

Где ещё можно поговорить про анализ данных?
http://ods.ai/

Нужно ли покупать видеокарту/дорогой пека?
Если хочешь просто пощупать нейроночки или сделать курсовую, то можно обойтись облаком. Google Colab дает бесплатно аналог GPU среднего ценового уровня на несколько часов с возможностью продления, при чем этот "средний уровень" постоянно растет. Некоторым достается даже V100.
Иначе выгоднее вложиться в GPU https://timdettmers.com/2019/04/03/which-gpu-for-deep-learning/ Заодно в майнкрафт на топовых настройках погоняешь

Когда уже изобретут AI и он нас всех поработит?
На текущем железе - никогда, тред не об этом

Кто нибудь использовал машоб для трейдинга?
Никто не использовал, ты первый такое придумал. Готовь камаз для бабла.

Список дедовских книг для серьёзных людей:
Trevor Hastie et al. "The Elements of Statistical Learning"
Vladimir N. Vapnik "The Nature of Statistical Learning Theory"
Christopher M. Bishop "Pattern Recognition and Machine Learning"
Взять можно тут: http://libgen.io/

Напоминание ньюфагам: немодифицированные персептроны и прочий мусор середины прошлого века действительно не работают на серьёзных задачах.

Предыдущие:
https://2ch.hk/pr/res/1881607.html (М)
https://2ch.hk/pr/res/1868191.html (М)
https://2ch.hk/pr/res/1847673.html (М)
https://2ch.hk/pr/res/1832580.html (М)
https://2ch.hk/pr/res/1817320.html (М)
https://2ch.hk/pr/res/1785952.html (М)
https://2ch.hk/pr/res/1758961.html (М)
https://2ch.hk/pr/res/1734710.html (М)
https://2ch.hk/pr/res/1704037.html (М)
https://2ch.hk/pr/res/1665515.html (М)
2 1902447
Сорян за неканоничный перекат(((
Рука сорвалась
3 1902450
Это тред №34
4 1902451
>>447
Удаляй и новый делай
sage 5 1902464
вообще да, че бы новый не сделать
>>1902462 (OP)
>>1902462 (OP)
>>1902462 (OP)
>>1902462 (OP)
Тред утонул или удален.
Это копия, сохраненная 6 января 2021 года.

Скачать тред: только с превью, с превью и прикрепленными файлами.
Второй вариант может долго скачиваться. Файлы будут только в живых или недавно утонувших тредах. Подробнее

Если вам полезен архив М.Двача, пожертвуйте на оплату сервера.
« /pr/В начало тредаВеб-версияНастройки
/a//b//mu//s//vg/Все доски