tumblroujih3a5ia1wxzu7qo1500.jpg52 Кб, 500x500
МАТЕМАТИКА ДЛЯ НАЧИНАЮЩИХ N+1 29047 В конец треда | Веб
В этом треде мы изучаем математику. Если ты школьник или студент, и у тебя есть трудности с задачей, то здесь тебе помогут её решить или хотя бы скажут, в каком направлении двигаться для её решения. Чем более чётко и конкретно ты опишешь суть своих затруднений, тем выше твой шанс на содержательный ответ.

Основные списки литературы:
http://pastebin.com/raw/4iMjfWAf - classic
http://pastebin.com/raw/4FngRj6n - dxdy

Архив тредов (там же остальные списки литературы и полезные ссылки):
https://pastebin.com/raw/qhs0WNbY
2 120178
>>177 (Del)
арифметические правила из 5 класса
3 120179
>>176 (Del)

>Коммутативность и ассоциативность умножения?


Ты в курсе что там не только умножение и что не в нем проблема?
4 120180
>>179
а в чем прблема
5 120181
>>176 (Del)
как тождественные преобразования на английском будет? дословно не переводится всякие матрицы лезут
6 120182
https://naukaru.ru/ru/nauka/article/8063/view
где почитать статью не пойму
7 120183
>>173 (Del)
На продвинутом уровне никаких учебников нет и быть не может. Хорошо, если есть монографии, и можно не ебать себе голову выбором статей (часто это не так). Насчёт понятности целевой аудитории - мне вот анализ не нравится как концепция, хотя в пиздючестве я по нему дико угорал. Делает ли это анализ ненужным? Разумеется, нет. Аналогично с систематизацией высших категорий, не так ли?
8 120184
>>181
Identity/identical transformations, нет?
9 120185
Сап, сейчас учусь в колледже, через полтора года собираюсь поступать в вуз на техническую специальность, математику полностью забыл, как ее подучить желательно с нуля (деление, десятичные дроби и прочее) ЕГЭ сдавать не собираюсь (внутренние экзамены), перед вузом наверное найму ещё репетитора. С каких материалов выучить математику с полного нуля?
10 120186
>>175 (Del)
Т.к. мы работаем в $\Q$ (множество рациональных чисел), $\frac{3 \cdot x^2}{4}$ можно представить в виде $\frac{3}{1} \cdot \frac{x^2}{4}$, а в свою очередь $\frac{3}{1}$ можно представить, как $3$. Также и с $x^2$.
11 120187
>>171 (Del)
спроси в треде оснований конструктуха
12 120188
На каком курсе проходят теорию групп?
13 120189
>>177 (Del)
По-русски это переместительные и сочетательные свойства. Есть ещё распределительные свойства для операций и действий.
Местные снобы не знают.
14 120190
>>188
Гельфанд: Функции и графики.
Гельфанд: Алгебра.
Тригонометрию этого автора крайне не рекомендую. Лучше школьный учебник по алгебре для её повторения прочесть какого-нибудь Алимова.
15 120191
>>185
>>190
На втором, а так промахнулся с ответом.
16 120192
>>185
Ты сейчас на последнем курсе?
17 120193
>>189
поешь говна блядота
18 120194
>>192
Предпоследний, вот и думаю успею ли все подтянуть к тому времени (математику, физику, русский) в колледже тотально отупел. Спасибо за книги
19 120195
>>179
Ты про что? Деление тоже через умножение определяется.
20 120196
>>194
У тебя 2 года, анонче, так что успеешь.
21 120197
>>189

>Местные снобы не знают.


всё-таки здесь обсуждают математику, а не советскую программу для детей младшего школьного возраста
22 120198
>>185
А в какой вуз и какую специальность?
23 120199
>>197

>для детей младшего школьного возраста


А ты взгляни на вот это >>193.
Вполне себе экспонат, пропустивший данный этап развития.
Да и ты тоже не далеко уходишь, раз соотносишь советскую программу с переводами.
24 120200
>>199
шизоид, иди стекломоя наверни
25 120201
>>200
Всё-всё. Хватит подтверждать свой уровень. Класс коррекции в другом разделе.
26 120202
>>199
не все термины получают специальные переводы в рамках устоявшегося научного языка

слова "переместительные и сочетательные свойства" нигде не употрябляются кроме как в упомянутых школьных программах
27 120203
>>186
Объясни почему
(3x^2) / 4 = x^2 (3 / 4)
28 120204
>>202
Если предоставлю источник, в котором употребляются вне школьной программы, то ты признаешь что не прав и извинишься?
29 120205
>>203
У тебя есть следующие множители: 3, x^2, 1/4. От их вычисления в разном порядке произведение не меняется. В первом случае ты сначала умножаешь 3 на x^2, а потом на 1/4, во втором ты сначала умножаешь 3 на 1/4, а потом на x^2.
30 120206
>>201
совковая говнососина, тебя кто сюда звал вообще? иди в другом месте кукарекай
31 120209
>>206
У тебя совок головного мозга. Таблетки выпил?
image.png11 Кб, 194x412
32 120210
33 120211
>>204
зависит от источника
потому что маргинальные исключения из статистического правила правило не меняют

мне известна математическая книга, где автор вообще пытался новое слово придумать, которого в языке нет. не прижилось
34 120212
>>211

>потому что маргинальные исключения


И тут ты будешь прятаться за своим мнением что маргинально (уточни значение слова первоначальное), а что нет.
Твоё утверждение неверно, так что и ерунду по поводу обсуждений математики тоже можешь оставить при себе.
35 120213
>>212
принести мне 3 источника от разных авторов, пишущих в разных облатсях и имеющих больше 10 публикаций, где они последовательно называют коммутативность и ассоциативность "переместительным" и "сочетательным" свойствами, и я готов отменить требование маргинальности

можешь принести один такой источник, если он относится к алгебраической геометрии, я тоже соглашусь
36 120215
>>213

>принести мне


>я готов отменить требование


За щёку тебе принёс. Проверяй.
37 120216
>>29047 (OP)
Сегодня няшиться будем?
38 120217
>>215
ну, что и требовалось доказать
image.png217 Кб, 539x480
39 120218
В соревновании по футболу участвовали 5 команд. Один из зрителей предположил что они займут места в следующем порядке A Б В Г Д Е, а другой предсказал Г А Е В Б. В итоге первый не угадал ни места, ни какую из пар команд следующих друг за другом. Второй угадал места двух команд и 2 пары следующих друг за другом. В каком порядке расположились команды?
image.png470 Кб, 600x581
40 120219
41 120220
>>218
хуй кто такое решит итт
42 120221
>>218
Куда у тебя Д проебалась во втором случае
43 120222
>>217

>ЧТД


Безусловно. Ты ошибся, проявил снобизм - закономерно был послан. Что тебе не нравится?
44 120223
>>222
ты проявил глупость - спросил меня, готов ли я извиниться, если ты принесёшь источники - источники не принёс - снова проявил глупость - бросил тупое оскорбление - остался при своём мнении, в котором изначально нет никакого смысла - и думаешь, что мне что-то не нравится
45 120224
>>223

>спросил меня, готов ли я извиниться, если ты принесёшь источники - источники не принёс


Так ты же не согласилось, а начало ещё и требования выкатывать. Кто глупость проявляет, а?

>в котором изначально нет никакого смысла


Кто это решило?
46 120225
>>224
вонючий кусок тупого говна, ты меня спросил, готов ли я извиниться, если ты принесёшь источники, я тебе честно ответил, что готов, если источник твой не говно, после чего ты порвался по неизвестной причине. если тебе так важно принести твой "источник", то неси всё равно, посмеюсь с тебя

я напомню, что утверждение было о том, что никто в серьёзной науке никто не называет коммутативность и ассоциативность "переместительным" и "сочетательным" свойствами, если ты хочешь это опровергнуть, попробуй сделать это прилично, без разбрасывания ошмётков своей задней кишки

смысла в этом всё равно нет, потому как в конечном итоге наплевать, кто, что и как называет, если он говорит содержательное что-то
47 120227
>>225

>я тебе честно ответил, что готов, если источник твой не говно


Эй, мразота, тебе уже указал что вне школьной программы есть употребление данных слов в литературе, а ты теперь пытаешься ещё определять что является достойным, а что нет.

>я напомню, что утверждение было о том, что никто в серьёзной науке никто не называет коммутативность и ассоциативность "переместительным" и "сочетательным" свойствами


Где было такое утверждение ранее, пиздлявое животное? Давай прямую цитату.

>после чего ты порвался


Фантазии?

>если тебе так важно принести твой "источник", то неси


Если предоставлю источник, в котором употребляются вне школьной программы, то ты признаешь что не прав и извинишься? Принимаешь это условие, пиздлявое животное?
48 120228
>>227

>тебе уже указал что вне школьной программы есть употребление данных слов в литературе


какой литературе? литература бывает разная. но ты давай, неси свою литературу

>Где было такое утверждение ранее


ой, какие мы тупенькие
было сказано:

>слова "переместительные и сочетательные свойства" нигде не употрябляются кроме как в упомянутых школьных программах


под словом нигде/b] имелась в виду (современная) математика, ты должен был понять из контекста

>Фантазии?


тебя ж несёт аки кракатау, сплошные визги и оскорбления
было бы хотя бы от чего, лол

>Если предоставлю источник


неси свой источник, посмотрим на него, даже интересно. кто там автор? Арнольд? но даже он тоже говорит про "коммутативность" повсеместно, а не про переместительность
49 120229
>>228

>ты должен был


Ты должен шлюхой пиздлявой переставать работать. Почему не исполняешь?

>сплошные визги и оскорбления


>вонючий кусок тупого говна


Ой, блядота, а как так получается что оскорбления от тебя в первую очередь поступили? Что же тебя теперь корёжит?

>неси свой источник


Условие принимаешь, шлюха?
Вот это условие:

>Если предоставлю источник, в котором употребляются вне школьной программы, то ты признаешь что не прав и извинишься? Принимаешь это условие, пиздлявое животное?


Источник математический.
50 120230
>>229

>Ты должен шлюхой пиздлявой переставать работать. Почему не исполняешь?


смотрю, ты достиг интеллектуального потолка

>как так получается что оскорбления от тебя в первую очередь поступили?


в каком месте, милый ты мой (и всё равно рвёт-то тебя)

>Источник математический.


несёшь или нет?
51 120231
>>230
Принимаешь условие, пиздлявая?

>Если предоставлю источник, в котором употребляются вне школьной программы, то ты признаешь что не прав и извинишься?

52 120232
>>231
бог ты мой, как корёжит-то

А если я на один твой "источник", который так и не принёс, принесу 10000 источников, где используются слова "коммутативность" и "ассоциативность", ты передо мной извинишься, школота ты ебанутая?

мне наплевать, если какой-нибудь фрик на какой-нибудь бумажке употребил слова не так, как это делают повсеместно все остальные, и играть с тобой в детский сад ради него не буду. поищи себе для этого собратьев по разуму
53 120233
>>232
Читать эту "простыню" не стал. Принимаешь раннее условие или нет, пиздлявое животное?
54 120234
>>233
пиздуй в свою песочницу и там ставь условия. мы тут математику обсуждаем, а не петушиный дет. сад
55 120235
Из-за какой-то терминологической хуйни спорите. Термины "коммутативность" и "ассоциативность" являются общепринятыми, их употребляют во всех университетах, и гуглить легче всего их. Какой смысл пихать новичку всякие "сочетательные" и "переместительные" свойства, если он даже педивикию хуй нагуглит с этой терминологией?
56 120236
>>234
конструктушиный спок
57 120239
>>234

>ставь условия


Что такое, шлюха? Не вывозишь?

>мы тут


Кто "мы", шизло манипулятивное?
58 120240
>>239

>Кто "мы", шизло манипулятивное?


ну, есть ещё петухи, например, такие, которые орут про какие-то источники, которые они ни за что не принесут, пока не истребуют гарантии, что их не обоссут, а без этого они только срут и визжат (комплексы, наверное)

петухов я не считаю, виноват
59 120241
>>240

>Кто "мы", шизло манипулятивное?


>ну, есть ещё петухи, например, такие, которые орут про какие-то источники


Но исходя из предыдущих сообщений, ты считаешь петухами обсуждающих математику, в том числе и себя, ибо относишь к "мы".
Ты же ебанутое животное. Всё. Пиздец.
60 120242
>>241

>Но исходя из предыдущих сообщений, ты считаешь петухами обсуждающих математику


даже боюсь подумать, как ты пришёл к таким потрясающим выводам
тебе кажется, что в твоих визгах есть что-то про математику?
61 120243
>>242

>даже боюсь подумать, как


А ты не бойся, животное пиздлявое.
Просто перечитай вот это своё сообщение
>>234

>мы тут математику обсуждаем, а не петушиный дет. сад

62 120244
>>243
утомил срать уже
давай, кукаретни ещё раз и катись нахуй
63 120246
>>244
КУ-КА-РЕ-КУ
64 120247
>>243
>>244
Лучше бы задачку решили два долбоеба. >>218
Устроили тут черт знает что, тьфу.
65 120248
>>247
Ты бы исправил сначала задачку свою.

>В соревновании по футболу участвовали 5 команд.


>в следующем порядке A Б В Г Д Е


Это уже 6 команд, смекаешь?
66 120249
>>218
Если исключить лишнюю команду Д, то единственный вариант это ЕГАВБ.
67 120251
Сколько в среднем типичному 18-летнему студенту нужно времени в часах на изучение одного учебника в условные 100 страниц по, например, основам теории групп или топологии? А именно, чтобы прочитать, понять, прорешать задачи и т.д.
68 120253
>>251
Часов 25 скорее всего хватит
69 120254
>>251
14 часов в течении 88 дней будет достаточно
70 120255
Объясните мне, долбоебу-школобесу, по-человечески, что такое автоморфизм группы. Везде определения разные, нигде нет примеров, даже не смог найти формулы, как то было с изоморфизмом.
71 120256
>>255
автоморфизм пространства (группы, кольца, ...) - это изоморфизм из этого пространства в него же.

например, поворот вокруг начала координат есть автоморфизм пространства $\mathbb R^2$
72 120257
>>218
Лол ты выбрал тот вариант который точно невозможен

>Второй угадал места двух команд и 2 пары следующих друг за другом

73 120258
74 120259
>>257
Угадал места В и Б, угадал пару ВБ и пару ГА. Это не просто возможный вариант, а единственный возможный, если я правильно понял твои кривые условия.
75 120260
>>255
Повезло тебе. А я не понимаю, что такое изоморфизм. Вообще. Я тысячи видео посмотрел, тысячи сайтов перелазил. Какие-то дебильные примеры, не раскрывающие понятие. Типа они свойствами похожи или че?
76 120261
>>260
$A$ изоморфно $B$ это когда всё, что справедливо для $A$ (без дополнительных построений), верно и для $B$, и наоборот
77 120262
>>261
То есть одинаковые свойства?
78 120263
>>262
да, одинаковые свойства
79 120264
>>263
Все равно не понял. Ощущаю фрустрацию.
80 120265
>>264
разбери определение
81 120269
>>247
Пошёл нахуй, ебанат. Задачи нормальные лучше бы научился публиковать и этого бы (>>242) выблядка занял, а то он, скучающий "аристократ", воняет чернью из последней свинарни.
82 120270
>>269
петух распетушился - петуха не остановить
золотое правило /math
83 120271
>>270
Тогда прекрати обсуждать математику, петух.
84 120272
>>271
ясли-петух, вынь из жопы "источник", у тебя походка кривая
85 120273
>>272
Убери зеркало, петух, обсуждающий математику.
86 120274
Помогите пожалуйста =(
image.png10 Кб, 324x345
87 120276
>>274
У тебя в чём-то конкретно проблема?
В целом, скажу так, гуглишь свойства логарифмов, вот например пик сойдёт. Потом сидишь и смотришь, что из этих свойств тебе помогает упростить неравенство. Не забывай про область допустимых значений логарифма!
В первом примере тебе нужно применить пятое свойство с моего пика и превратить разность логарифма в логарифм частности. После этого можно избавится от логарифмов с обеих сторон и решать это уже как неравенство с квадратным уравнением.
Во втором примере тебе нужно возвести 25 в степень соответствующую левому и правому выражению, после чего применить слева первое свойство с пика.
В третьем примере следует заменить 3^x на другую переменную и решать с ней, а в конце найти x по уже найденному диапазону значений 3^x.
Если что-то непонятно, то задавай конкретные вопросы. Если сомневаешься в ответе, то проверь на вольфраме.
И советую на досуге понять, что такое логарифм и почему у него такие свойства, а то туго в шкалке будет.
88 120277
к чему ненависть, давайте лучше вместе кала навернем
89 120278
>>157 (Del)

>Алексеева "теорема Абеля в задачах и решениях", он типа для школьников.


Все-таки прав был один дед, когда говорил, что школьники в СССР умные были и великую теорему Ферма щелкали, если для них это было написано и они это все понимали.
90 120279
А, извиняюсь, не СССР.
91 120280
>>29047 (OP)
Почему вы еще не создали Главный Вычислитель?
92 120284
Как оценить сложность примера? Например, есть примеры на нахождение $x$: $x+2=8$ и $6 \cdot 8 + 2 = x$. Как оценить, какой из них сложнее? Как вообще оценит сложность?
93 120285
>>284
таракан съеби
94 120287
>>285
Схуяли я таракан? Уже и спросить нельзя??
95 120289
>>287
нельзя
96 120291
>>287
то страж Черного Хуя, шли его на хуй
97 120292
>>291
пошел нахуй
98 120296
>>284
Как хочешь. Ну вот, например, минимальное количество тождественных преобразований, необходимых для решения уравнения. Тебе нужно только зафиксировать конечное состояние и набор элементарных тождественных преобразований. Дальше задача сводится к поиску минимального пути в получившимся графе.
image.png1,7 Мб, 1000x1429
99 120297
Сап, двачек. Хочу заняться как хобби мышиным обучением, будучи при этом бэкенд разработчиком. То есть в программирование чуточку умею.

Решил собсна вкатиться в математику для компухтер саенс по книжке пик релейтед. Давайте чтоб не забегать вперед сосредоточимся на первом пункте "линейная алгебра".

В книге даётся обзор линейной алгебры, но ощущается что как будто бы 3 листика с упражнениями это как-то маловато чтобы что-то на самом деле понять. Вроде читаю - понятно. А решить - сложно. Как посоветуете начать с линейной алгебры?

Смотреть видео лекции и потом решать задачки до просветления? Какие советики ваще?
100 120298
>>296
То есть просто сколько надо призвести операций, чтобы получить ответ, да?
Типа в примере $a+b+c$ - это $3$.
101 120299
>>297
Лучше читай книжки, когда слушаешь лекции и что-то недопонимаешь, то тебе либо надо отматывать лекцию назад и переслушивать, либо у тебя будет накапливаться недопонимание. А в книжке можно перечитывать абзац до того, как всё уложится в голове. Благо, книжек по линейной алгебре дохуя.
102 120300
>>299

А ханская академия - норма? Я щас нашёл и там типа в игровой форме всё учат за компутером и много примеров. Или хуйня собачья?
103 120301
>>298

>То есть просто сколько надо произвести операций, чтобы получить ответ, да?


Ну, это как самый простой из вариантов.

>Типа в примере $a+b+c$


Если a, b, c это известные целые числа, а нужное тебе состояние, состоящее из одного целого числа, то тебе нужно применить как минимум два сложения. Тогда сложность - 2.
104 120302
>>300

>ханская академия


Первый раз слышу.
105 120303
>>301
Ну да, это то, что я и имел ввиду.
Обшибся.
106 120304
>>300
хоханская
107 120305
Преподают ли в школах поля, группы, кольца и т.д? Хотя бы на таком базовом уровне, как у Винберга?
108 120306
>>305
в 57 вроде преподают
109 120307
>>306
А надо везде.
110 120308
>>307
Колмогоров, ты же вроде умер.
111 120309
>>301
Алсо, $a$ можно представить, как $1+1+1+...+1_a$, где кол-во операций — это $a-1$.
А операция по типу умножения вообще будет представлять кромешный пиздец, из-за чего сложность простенького примера для 4-классника будет иметь over9999 уровень.
Так что надо над новой системой думать.
image.png13 Кб, 1360x61
112 120310
>>309

>Алсо, $a$ можно представить, как $1+1+1+...+1_a$, где кол-во операций — это $a-1$.


Можно, если $a$ натуральное, только подобное преобразование не особо полезно. довольно трудно придумать уравнение, где такое преобразование будет входить в кратчайшее возможное.

>А операция по типу умножения вообще будет представлять кромешный пиздец, из-за чего сложность простенького примера для 4-классника будет иметь over9999 уровень.


Если умножение арифметическое, то да. В алгебре умножение определяется как отдельная от сложения операция.
Я думаю, ты не вполне понял идею. Нам нужно сначала зафиксировать набор всех используемых переходов(элементарных тождественных преобразований), а потом искать кратчайший путь до конечного состояния. Понятно, что граф может выйти бесконечный в зависимости от того, какие переходы мы закрепили, ибо даже 0 можно представить в виде бесконечного количества выражений, но для этого мы и ищем кратчайший путь.
Тем не менее, одну проблему ты поднял. Это то, что кратчайший путь может содержать неизвестное количество операций, которое равняется, например, $a-1$ как в случае выше. Можно использовать O-нотацию из теории сложности вычислений.

>Так что надо над новой системой думать.


Если есть предложения, то кидай пиши.
113 120312
>>310
Тогда ясно.
114 120313
>>119823
Задачи для даунов
115 120314
>>29047 (OP)
Все привет, какая зависимость диаметра блина от его толщины?
116 120315
>>314
тараканья
117 120316
>>314
Ну очевидно чем больше диаметр, тем сильнее растеклось тесто, значит тем меньше толщина блина. То бишь зависимость обратно пропорциональная.
118 120318
>>315
пошел на хуй, мудила
119 120319
>>316
Но мой диаметр могла ограничить сковородка, а значит, я мог налить столько блинной жижи, сколько захочу. Условия задачи некорректны.
120 120320
>>314
Смотря какая лопата
121 120321
>>319

>Но мой диаметр могла ограничить сковородка


В задаче ничего не сказано про размер сковородки, значит мы можем предположить что размер сковородки может быть любым, в том числе и таким чтобы тесто растеклось до ширины блина равной одной молекуле теста, что представляет собой максимально возможное растекание теста и минимально возможную ширину блина.
122 120322
>>318
да тебе же вся доска в рот срала
123 120323
>>321
>>319
Хорошо, давайте подправим, какое идельное соотношение диаметра блина к толщине по вкусовым и эстетическим качествам? Предлагаю 100 к 1, 20см диаметр и 2мм толщина. Математически идеально.
17192249122912.png220 Кб, 338x553
124 120326
Какие проги сегодня можно поставить лучшие с открытым кодом?
125 120327
>>326
Ты ошибся комнатой, таракан
image.png338 Кб, 517x609
126 120328
Почему не объясняется как вынесли -9/16 из скобок? Интуитивно я догадываюсь, что 2 умножили на -(9/16), знаменатель сократился, но где правило, которое позволяет это делать? Почему не объясняется? Ещё раз, учебник для 7 классов, почему это должно быть "очевидным"?
127 120329
>>328
Умножение это обратная операция деления. Если мы умножаем дробь, то это всё равно что мы делим её знаменатель.
128 120330
>>329
Вообще не об этом я спрашивал, а о том как из скобок это слагаемое вынесли, но уже разобрался.
129 120331
>>328

> Почему не объясняется? Ещё раз, учебник для 7 классов, почему это должно быть "очевидным"?


Отлови авторов и спроси у них. Мы-то здесь причём?
130 120334
>>327
ты идиот?
131 120335
>>334
ты таракан
132 120336
>>327
двачую, таракан навалился потроллить
2025-03-02 22.04.00.jpg30 Кб, 1280x211
133 120337
Привет всем.

К сожалению чатугпт и прочим аи очень и очень далеко до математики поэтому ищу помощи здесь.

Решаю самую первую задачу в математическом анализе зорича том 2.

Очень нужна помощь помогите пожалуйста. По зоричу нет вообще решебников.

Вся проблема в том что функция строго выпукла. То есть с дополнительными условиями такими как

1. $f(0)=0$
2. $f\in [0,\infty)$
3. f строго положительна и продолжительна

Утверждается что f супер аддитивна. И это приводит меня в тупик в доказательстве.

Вот мой ход мыслей.

1. $d(x_{1},x_{3})\leq d(x_{1},x_{2})+d(x_{2},x_{3})$ по определению метрики
2. $f(d(x_{1},x_{3})) \leq f(d(x_{1},x_{2})+d(x_{2},x_{3}))$ из за того что f строго возрастает
3. $f(d(x_{1},x_{2}))+f(d(x_{2},x_{3}))<f(d(x_{1},x_{2})+d(x_{2},x_{3}))$ поскольку f супераддитивна

Эх при кейсе когда f вогнутая, мы пользуем субаддитивностью f и доказываем что метрика $f(d(a,b))$ может быть на R

помогите люди добрые, не студент а самоучка

вот недавно решил вернуться к математике
2025-03-02 22.04.00.jpg30 Кб, 1280x211
133 120337
Привет всем.

К сожалению чатугпт и прочим аи очень и очень далеко до математики поэтому ищу помощи здесь.

Решаю самую первую задачу в математическом анализе зорича том 2.

Очень нужна помощь помогите пожалуйста. По зоричу нет вообще решебников.

Вся проблема в том что функция строго выпукла. То есть с дополнительными условиями такими как

1. $f(0)=0$
2. $f\in [0,\infty)$
3. f строго положительна и продолжительна

Утверждается что f супер аддитивна. И это приводит меня в тупик в доказательстве.

Вот мой ход мыслей.

1. $d(x_{1},x_{3})\leq d(x_{1},x_{2})+d(x_{2},x_{3})$ по определению метрики
2. $f(d(x_{1},x_{3})) \leq f(d(x_{1},x_{2})+d(x_{2},x_{3}))$ из за того что f строго возрастает
3. $f(d(x_{1},x_{2}))+f(d(x_{2},x_{3}))<f(d(x_{1},x_{2})+d(x_{2},x_{3}))$ поскольку f супераддитивна

Эх при кейсе когда f вогнутая, мы пользуем субаддитивностью f и доказываем что метрика $f(d(a,b))$ может быть на R

помогите люди добрые, не студент а самоучка

вот недавно решил вернуться к математике
134 120338
>>337
наверняка тут кто решал по зоричу?

может есть решебники?
135 120339
>>337
эх я понял

Зорич вогнутую функцию называет выпуклой вверх

мдаа тогда все ясно

ладно ребзя разобрался
136 120342
>>29047 (OP)
Что про следующие наименования скажите, годно?

a, b, c, d: parameters - unknown values, but assumed constant for the problem at hand. E.g. y= a x^2 + b x + c
e = 2.71828....
f, g, h: functions
i, j, k, l, m, n: integer variables or parameters are the first of many uses for these letters that you are likely to come across
o looks too much like 0, so it is rarely used
p, q, r: often relate to polynomial or rational functions. (P, Q, R are often used to name points in geometry)
s, t: dependent variables for parametric equations
u, v, w: vectors (or sometimes to name an alternative coordinate system)
x, y, z: variables on the coordinate axes
α, β, γ: angles
δ: distance, difference
ε: arbitrarily small variable
(𝜁, 𝜂): a particular point in (x,y) space
𝜃: an angle in standard position
𝜄,𝜅: do not look different enough from i, k
𝜆: wavelength
𝜇: arithmetic mean of a population
𝜈: frequency
𝜉: a function
𝜊: still looks like zero
𝜋 = 3.14159...
𝜌: radius of a slice of a sphere
𝜎: standard deviation of a population
𝜏 = 6.28318....
𝜐: looks too much like u
𝜙: phase angle
𝜒: looks too much like x
𝜓: angle as a parametric function
𝜔: angular frequency
136 120342
>>29047 (OP)
Что про следующие наименования скажите, годно?

a, b, c, d: parameters - unknown values, but assumed constant for the problem at hand. E.g. y= a x^2 + b x + c
e = 2.71828....
f, g, h: functions
i, j, k, l, m, n: integer variables or parameters are the first of many uses for these letters that you are likely to come across
o looks too much like 0, so it is rarely used
p, q, r: often relate to polynomial or rational functions. (P, Q, R are often used to name points in geometry)
s, t: dependent variables for parametric equations
u, v, w: vectors (or sometimes to name an alternative coordinate system)
x, y, z: variables on the coordinate axes
α, β, γ: angles
δ: distance, difference
ε: arbitrarily small variable
(𝜁, 𝜂): a particular point in (x,y) space
𝜃: an angle in standard position
𝜄,𝜅: do not look different enough from i, k
𝜆: wavelength
𝜇: arithmetic mean of a population
𝜈: frequency
𝜉: a function
𝜊: still looks like zero
𝜋 = 3.14159...
𝜌: radius of a slice of a sphere
𝜎: standard deviation of a population
𝜏 = 6.28318....
𝜐: looks too much like u
𝜙: phase angle
𝜒: looks too much like x
𝜓: angle as a parametric function
𝜔: angular frequency
137 120343
>>342
это хороший вопрос для chat gpt, заодно он английский тебе поправит. что ты в принципе хочешь, вообще не очень понятно
138 120344
>>343

>заодно он английский тебе поправит


Это копипаста, англоговно мне на хуй не нужно.

>что ты в принципе хочешь, вообще не очень понятно


А хочу систематизировать именования, на пример есть два вектора и как их мне обозвать? v1 и v2, или v и w, а если их больше? А результат их суммы? Вот
139 120345
>>344
ну как хочешь, так и называй
если ты пишешь текст, то это творческое занятие: ты прислушиваешься к своим ощущениям, как тебе уютно, что звучит красиво. нет смысла создавать себе дополнительные рамки
140 120347
>>345
Ты ЧатГПТ? Именование это важнейшая часть и прыгать с одного на другое это плохо
141 120348
>>347
а я нигде не написал, что ты должен прыгать
142 120349
>>348
Творческое занятие это и есть прыганье, все должно быть формализовано
143 120350
>>349
дело твоё
144 120351
>>350
Это то понятно, а сложившихся общепринятых именованией типа пи, x y z нет?
145 120352
>>351
нет. есть те, что часто употребляются в том или ином контексте. если ты пишешь текст в какой-то области, ты, наверно, много читал литературы, касающейся этой области, и устоявшиеся обозначения тебе понятны. иногда устоявшиеся обозначения конфликтуют между собой (некоторые буквы используются особенно часто для разных вещей), и тогда всё равно приходится от чего-то отказываться и вводить своё обозначение. никаких строгих правил касательно этих вещей нет
146 120353
>>352
Понятно, спасибо.
147 120354
суть математики - просто последовательная цепочка случайных преобразований, в надежде, что они сообщат нам что то новое
148 120355
>>354
Суть шахмат - просто последовательная цепочка случайных ходов в надежде поставить мат.
149 120356
>>355
Суть двача - последовательно писать важные и глубокие вещи в надежде сморозить хуйню
150 120357
>>356
Так я действительно же сморозил хуйню, как и анон выше. Если мы не можем строго рационализировать выбор хода в шахматах, равно как и преобразование в математике, то это не значит, что они случайные. Иначе мы должны были бы признать, что разница между хорошим и плохим математиком только в удаче.
151 120358
>>354

>последовательная цепочка случайных преобразований


Последовательно преобразовал свой хуй тебе за щеку.
152 120359
>>354
суть тараканов - просто последовательно срать себе в штаны, в надежде, что однажды какашечка задержится
173858236712025037.jpg32 Кб, 640x596
153 120360
>>29047 (OP)
Кто нибудь из уважаемых анонов встречал годную литературу по аналоговым вычислениям/компьютерам?
154 120361
>>360
вряд ли, не математика же
155 120362
>>360
такой не бывает, потому что тараканинг
156 120364
>>362
>>361
Опять на связь выходишь, мудила?
157 120365
>>364
нет, это только ты зачем-то регулярно публично серешь себе в штаны
СС.jpg63 Кб, 1280x773
158 120366
Крутые спецы есть?

О чём речь на картинке?
159 120367
Хочу вкатиться в теорию чисел. Какие подводные? Какие книги посоветуете?
160 120368
>>366

>О чём речь на картинке?


О шизе автора рисунка.
161 120369
>>367
это глубокая и тяжёлая наука, которая происходит из алгебраической геометрии
162 120370
>>368
А вся остальная математика - выходит, шиза других авторов.
Ну ладно, отлично.

Так затрагиваемое множество шизы - в какой конкретно узкой области науки и техники сегодня применяется?
163 120371
>>370
принеси осмысленный текст, потом спрашивай
никто не будет с лупой разбирать эти каракали
поди не пуанкаре их чиркал
164 120372
>>369
Подводные я увидел, теперь давайте книги.
165 120373
>>372
можно начать с основ: Ж.-П. Серр, "Курс арифметики"
image.png53 Кб, 1714x214
166 120374
Чуваки, правильно ли я рассуждаю? Рассмотрим произвольный $ g \in \mathbb{Q}[x]$. Поскольку деление с остатком возможно в кольце многочленов то найдутся такие единственные многочлены $q $ и $ r $, что $ g = pq + r $ и $ \operatorname{deg}(r) <\operatorname{deg}(p) $, и тогда $ g(\alpha)=p(\alpha)q(\alpha) + r(\alpha) = r(\alpha)$ а значит, значение на элементе $ \alpha $ любого многочлена $ g $ это есть значение на $ \alpha $ многочлена $ r $ степень которого $ < \operatorname{deg}(p) $ а значит базис этого пространства образуют элементы $ \{1, \alpha, \alpha^2, \ldots, \alpha^{(n-1)} \} , n = \operatorname{deg}(p) $. Ну и размерность равна n.
167 120375
и где мы здесь используем комплексность?
168 120376
>>371
Ну так любая осмысленность относительна, долбоёб.
И если ты долбоёб, то это твоя личная проблема, долбоёб.
image.png1,7 Мб, 1280x720
169 120377
>>366
так тред же не тот
170 120378
>>377
Фу, ну и уроды эти тараканы
171 120379
>>374
это правильная идея, хотя подробностей маловато (на мой вкус)

>>376
с этим в /ph, дебила кусок
172 120381
>>366
Выпуклое программирование.
173 120382
>>381
с этим в /pr, дебила кусок
174 120383
>>382

>/pr


То же самое что матх, согласно изоморфизму Карри-Ховарда.
175 120384
Случайно наткнулся на Лекса Кравецкого. Все программисты такие ёбнутые?
764990922o.jpg49 Кб, 582x350
176 120385
>>360
Неа. Удивлюсь, если есть. Офигел когда-то давно, осознав, что у США были системы автонаведения пулеметов на аналоговых технологиях. Последний раз в 90-х использовали.
177 120386
>>368
>>371
>>377
>>381
>>382
>>383

Блядь, хватит выёбываться, что на фотке!?

Мне это во сне крутой учёный в белом халате и очках, лет 50, чертил мелом на доске, пояснял за устройство мира в виде сложных систем, которые собираются из простых моделей и записывается это всё в виде формулы и тут я проснулся и вспомнил это, повезло.
Короч, примерно так выглядело, не запомнил на 100%, но дополнил, что забыл, чисто логически, получилось то, что вы видите, осталось разобраться.
178 120387
>>383
сук пздц(((
179 120388
>>386
А мне приснилось, что у меня Фоменко экзамен принимал. Валит, сука.
180 120389
>>388
не знаю, как он принимает, но в личном общении няша
181 120390
>>386
Мне кажется это из области медицины, а не математики. Попробуй психиатру показать, он должен разобраться
182 120391
>>389
Если доведётся случай, то передай ему, чтобы во сне не слишком валил студентов.
183 120392
Если не понимаю некоторые упражнения и просто переписываю чужое решение (его понимаю процентов на 80, но сам бы вряд ли решил). Теорию в целом понимаю.
Есть ли в таком обучении толк? Стоит ли ждать что если будешь разбираться в чужих решениях то в какой то момент и сам сможешь решать похожие задачки?
184 120393
>>392
на эти вопросы нельзя ответить однозначно если ты не петух-неосилятор
делай, как получается
старайся делать сам более простые задачи
16537641872440.jpg107 Кб, 797x770
185 120394
186 120395
>>386
я не могу поверить, что ты во сне смог увидеть и тем более запомнить несколько чисел в двоичной форме. Если это действительно так, то попробуй позаниматься осознанными снами, там и узнаешь ответы на свои вопросы
Математика Ping 187 120396
Посоветуйте каналы,книги для изучения математики, база имеется тоесть квадратные уравнения и тп 8-9 класс база
В школе проходим синус тангенс котангенс ничего не понимаю и в геометрии полный 0 дайте советы по изучению этих 2 предметов геометрия и алгебра пожалуйста!
188 120397
>>396
борис трушин, элементарная математика - теория
профиматика, пифагор (школал пифагора хз не помню) - практика
189 120398
Если мне хочется учить и развиваться в теории_нейм, обязательно ли перед этим ботать матАн? Понятно, что пределы, интегралы и прочее знать надо, но именно стоит ли углубляться или хватит поверхностного ознакомления или даже школьного курса?
190 120399
>>398
люби гомологии пидор
191 120402
>>398
непонятно что ты называешь "матаном"
можешь попробовать сразу осваивать твою теорию, если трудно, откатишься назд
192 120403
>>402
МатАн - Математический Анализ.
flat,800x800,075,f-2555385287.jpg13 Кб, 273x185
193 120404
Как вам удалось понять метод математической индукции? Я просто не могу связать это с соответсвтенной аксиомой Пеано. Для кого-то реально это настолько просто понять, что он может просто по ходу лекции, где на это уделено минут 5-10, послушать и сложить картинку?
194 120406
>>404
Предполагаем, что некое уравнение справедливо для $n=1$ (натуральное число по аксиомам Пеано). Если это так, то , возможно, оно верно и для $n=k+1$ (любое следующее за натуральным число натуральное число, $k$ и $n$ — натуральные числа [следовательно, $k+1$ — число на 1 больше, чем $k$]). Дальше методами тождественного преобразования делаем так, чтобы оба уравнения сравнялись. Если так, то пишем гордо «Доказано». Если нет, то ищем ошибку, а потом пишем «Доказана неверность».
Алсо, если смотришь лекции Шапошникова, то, по моему личному мнению, лучше не стоит. Объясняет не очень.
image.png205 Кб, 973x971
195 120407
Чуваки, можете пж проверить, верно ли я доказываю то, что для всякого базиса в V найдётся дуальный базис в V. Во всех книжках авторы, обычно, просто ссылаются на результат канонического изоморфизма между V и V*, но мне хотелось доказать это утверждение конструктивно.
196 120408
>>407
для заданного базиса можно определить набор ковекторов, заданных символами кронера на базисных векторах, и проверить, что такой набор образует базис в пространстве $V^\ast$ (он же и называется "дуальным базисом"); это элементарная проверка в две строчки, не требующая никаких дополнительных рассуждений

между пространствами $V$ и $V\ast$ вообще говоря канонического изоморфизма нет, по крайней мере в отсуствии дополнительной структуры
197 120409
>>404
не удалось
мимо конструктивных петух
198 120410
>>406
Я, вроде, знаю как вылгядит метод математической индукции, я вчера пол дня пытался разобраться в нём с чатгпт. Мне не очевидно, почему после всех этих действий мы решаем, что что-то доказали. Ну ещё сегодня попробую от противного в соло подоказывать, типа уже - с чего я взял, что не доказал.
Мне вот ещё интересно, как много людей, которым поясняют аксиомы Пеано, а потом поясняют метод математической индукции, и те такие "А, ну да. Очевидно же. Вот оно как."
199 120411
>>410

>как много людей


Почти все
200 120413
>>410
Ну, попробуй по-другому доказывать. Я, помню, доказывал какое-то утверждение, разбивая $a$ на единицы, лол (типа $a=1+1+1+...+1_a$)
201 120414
>>410
индукцию можно понимать так. пусть у нас есть утверждение $P$, которое зависит от натурального числа $n$. мы доказали это утверждение для $n=1$; потом для $n = 2$; потом для $n = 3, 4, 5, \dotsc$ и т.д. пусть мы понимаем, что если доказать $P$ для произвольного $n$, то для $n+1$ оно получается как следствие. это значит, что для каждого $n > 1$ утверждение доказывается за $n - 1$ шагов. и здесь мы заключаем: раз утверждение отдельно доказывается для любого $n$, то оно верно для $n$ сразу всех вместе. это и есть индукция: только вместо доказательства для $n = 3, 4, 5, \dotsc$ мы сразу пытаемся доказать импликацию $P(n) \Rightarrow P(n+1)$. потому что если мы такую импликацию доказали, её можно применить ко всем числам: тем самым, для каждого числа утвреждение $P$ верно
202 120415
>>404
че? просто выведи принцип мат.индукции из того факта, что в любом непустом подмн-ве N есть наименьший элемент
203 120416
>>404
А вот у меня другой вопрос. Если есть аксиомы Пеано (хочется все время написать Пиано) для натуральных чисел, то есть такие же для целых, рациональных и далее? (Ясен хуй, что есть, т.к. их может вывести любой школьник, просто я их ни разу не видел)
204 120417
>>416

>и далее


>их может вывести любой школьник


)))
205 120418
>>417
А в чем я не прав? Хотя бы для целых чисел.
206 120419
>>416
Не такие, но, естественно есть
207 120420
>>419
А какие? Приложи ссылки.
208 120421
>>416
Целые и рациональные да и вещественные с алгебраическими числа выводятся через натуральные в конце концов, так что всё равно аксиомы Пеано или какая либо другая аксиоматика для для натуральных чисел будут содержаться в аксиоматике для этих чисел.
209 120422
>>404
Есть задачи, где индукция естественным образом возникает. Сам в школе доказывал неравенства методом индукции, но чувствовалось что это как-то натянуто, интуитивно индукцию не понимал.
Попробуй доказать, что в любом конечномерном пространстве все базисы имеют одно и тоже число векторов.
210 120423
>>420
Бля, в википедию зайди
211 120424
>>29047 (OP)
Водка или пиво? Вот в чем вопрос
212 120425
>>424
зачем выбирать что-то одно?
213 120426
>>425
Золотые слова, Юрий Венедиктович
ТВ функция распределения вероятностей Andrew 214 120427
Привет. Я студент второго курса. С высшей математикой нас перестали дрочить и теперь у нас изичная теория вероятностей раз в неделю.

Я делал дз с простой задачкой, но меня озадачил вопрос того, возможно ли её решить геометрически. Мой вопрос:

Можно ли описать распределение вероятностей k произошедших событий A, в серии n испытаний c вероятностью отдельно взятого события p в виде функций или типа того?

Рисуем график где y(0<=y<=0) это вероятность, x(0<=x<=2500) это количество испытаний, x обрывается на 2500, потому что всего пооизведенно 2500 испытаний. График будет показывать распределение вероятностей того с каким шансом за 2500 испытаний событие А произойдёт k раз. График будет в виде пирамиды, и как я понимаю График не будет отписываться двумя прямыми. В моей задаче вероятность A в каждом отдельном испытании равна 1/2. Можно ли составить функцию или ряд функций на отрезках которые смогут описать поведение данного распределения? Хочу через интеграл задачу решить попробовать.

Изначально суть задачи найти вероятность того что k < 1300 за 2500 испытаний. Следовательно нужно взять интеграл с пределами от 0 до 1300

Я извиняюсь если вы посчитали что я написал гору хуйни. Я глупый студент второкурсник нищего уника
Andrew 215 120428
Ошибся y равен от 0 до 1, опечатался
17415394285690.mp43,3 Мб, mp4,
720x944, 0:27
216 120429
217 120430
>>429
Спасибо, сохранил,машала
218 120431
Предположим, что я придумал гипотезу, которую доселе никто не высказывал. Также предположим, что простота её формулировки на уровне гипотезы Коллатца и прочих ВТФ (Великая Теорема Ферма), из-за чего распыление её на 10 страниц научной статьи невозможно. Также предположим, что я социоблядь нарциссичная, а потому выкладывать её анонимно или под псевдонимом не хочу, т.е. хочу, чтобы все запомнили, кто автор гипотезы.
Вопрос: что мне делать?
219 120432
220 120433
>>408
Вот оказия, у меня в сообщении звёздочки не отобразились. На пикче я предложил рассуждение, доказывающее, что для любого базиса в V со звёздочкой, найдётся дуальный в V базис. То, что для любого базиса в V найдётся дуальный к нему базис в V со звёздочкой это достаточно понятно и очевидно, а вот утверждение, которое я доказываю, его в книгах приводят без доказательства в качестве следствия теоремы о каноническом изоморфизме между V и V с двумя звёздочками.
221 120434
>>429
саляфизм по всем фронтам суфизм прессует, удивительно что зикр в открытую рекламируется где то в россии
222 120435
>>434

>суфизм


Скуфизм?
223 120436
>>433
так оно и следует напрямую из этого изоморфизма.
у тебя есть базис в $V^\ast$, ты делаешь из него двойственный базис в $V^{\ast\ast}$. к последнему применяешь изоморфизм $V^{\ast\ast} \to V^\ast$, у тебя получается базис в $V$. изоморфизм канонический и задан явно (явной формулой), поэтому последний базис получен конструктивно, он записывается в явном виде. прямая проверка (проведи) показывает, что твой исходный базис в $V^\ast$ в точности есть двойственный базис к полученному базису в $V$. можно также на всё это посмотреть в координатах, отвечающих заданному базису

никаких матриц перехода и прочих ужасов для этого рассуждения не надо

>>431
докажи гипотезу для частного (но нетривиального случая) и в заключение предположи, что она верна и в общем виде. текст с доказательством частного случая публикуешь в уважаемом журнале, результат рассказываешь на как можно большем количестве конференций. можно опубликовать несколько работ, разбирающих разные частные случаи. можешь создать научную школу, набрать учеников, заработать авторитет
224 120437
>>436

>к последнему применяешь изоморфизм $V^{\ast\ast} \to V$, у

225 120438
>>436

>докажи гипотезу для частного (но нетривиального случая) и в заключение предположи, что она верна и в общем виде.


Т.е. расписать сначала, что такое условное треугольное число, потом написать
Гипотеза: гипотеза.txt,
приложить пару примеров и все?

Я, в принципе, все это уже написал, только без объяснения, что такое условные треугольные числа (т.е. без abstract, ибо мне в него банально нечего написать).

Если что - я новичок в этом деле, так что отнеситесь, пожалуйста, с пониманием и терпением
226 120439
>>438

>приложить пару примеров и все?


да, только ключёвое слово нетривиальные
т.е. эти примеры должны быть не элементарные, а представлять реальную трудность, которую ты в своей статье преодолеваешь
image.png28 Кб, 802x895
227 120440
>>439
>>436
Моя проблема в том, что дальше 1-й страницы я выдавить из себя не способен (а, как я знаю, журналы принимают статьи лишь от 5000 знаков и выше), ибо гипотеза, как я и писал, проста в формулировке. Для примера, получается что-то вроде пикрила.
228 120441
>>440
что ж, ты спрашивал что делать, и я сказал тебе, что можно делать
могу предложить другой (реалистичный) вариант: смириться и позабыть про свою гипотезу
229 120442
>>441
Ладно, опубликую ее на сайте типа ArXiv и пусть там лежит.
230 120443
>>436
Какие журналы можешь посоветовать? В каких сам публиковался?
231 120444
>>443
любой из Q1/Q2 подойдёт
232 120445
>>444
В каких советуешь — отечественных или зарубежных?
233 120446
>>445
любых из Q1/Q2, я же сказал
234 120447
Можно ли как-то явно указать базис в векторном пространстве матриц порядка $n$ с нулевым следом?
235 120450
>>444
Ага, только там везде при регистрации надо указывать чуть-ли не биометрические данные членов семьи до 7-го колена
мимо
236 120452
>>427
Можно, но это будет по сути просто переобозначением, где ты вместо суммы напишешь интеграл, а посчитаешь его всё равно как сумму после обратного упрощения. Тут всякая канитель с теорией меры будет, я сомневаюсь, что это тебе нужно. Ты хочешь сделать несколько другое. Вместо того, чтобы считать, что у тебя функция принимает конкретные целые значения с какой-то вероятностью (график такой функции над вещественной осью - отдельные точки на определённой высоте), ты хочешь считать, что она принимает значения на интервале между соседними целыми числами с равномерной вероятностью (тут график будет в виде ступенек). Не понятно, зачем тебе это, это хоть и эквивалентная картинка, но интерпретация уже несколько другая.
Если у тебя случайная величина принимает значения $\{x_k\in\mathbb{N}\}$ с вероятностями $\{p_k\}$, можно плотность условно записать как $p(x)=\sum_k p_k\mathbbm{1}_{[x_k, x_{k+1}]}(x)$, где $\mathbbm{1}_A$ - характеристическая функция множества A. Это ступенчатая функция, интеграл по ней, который нужен для нахождения вероятности, даст сумму. Примерно так, но мог где-нибудь напутать.

Можешь не страдать фигнёй и просто сумму сразу посчитать. Тебе нужно биномиальное распределение (или мультиномиальное, если исходов в каждом испытании больше 2) и посчитать сумму по нему (скорее всего, используя формулу для приближенного вычисления).
237 120455
>>452
*$\mathbb{1}_{[x_k,x_{k+1})}$
image.png34 Кб, 866x94
238 120456
Люди, есть идеи? У меня получилось только, что это равенство эквивалентно $\operatorname{dim}(\operatorname{Im}A + \operatorname{Ker}B) = \operatorname{dim}(V) $ а дальше не выходит...
239 120458
>>457 (Del)
да, действительно. видимо в условии опечатка
240 120459
>>458
справа должно быть rank BA
241 120463
Хочу задать идиотский вопрос по топологическому определению непрерывности -- я не могу понять, корректно ли я им пользуюсь. Буду очень благодарен, если кто-то прочитает и укажет на ошибки.

Пусть есть $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} 1, x \ge 0 \\ 0, x < 0 \end{cases}$.

Если применить к ней определение непрерывной функции из матанализа, получится, что $f$ не является непрерывной в точке $x_0 = 0$: если взять, например, $\varepsilon = 0{,}25$, тогда нельзя взять такую $\delta$, чтобы как только $|x - x_0| < \delta$ выполнялось $|f(x) - f(x_0)| < \varepsilon$.

Наверное, если рассмотреть $\mathbb{R}$ как топологическое пространство с <<обычной>> топологией, база которой состоит из открытых шаров, то есть интервалов $(a; b)$, должен получиться тот же самый результат -- $f$ не будет непрерывной.

Чтобы доказать, что $f$ не является непрерывной, достаточно найти хотя бы одно множество $U$, открытое в $\mathbb{R}$, прообраз которого $f^{-1}(U)$ не открыт в $\mathbb{R}$. Пусть $U$ -- интервал $U = (a; b)$ такой, что $1 \in (a, b), 0 \notin (a, b)$, его прообраз $f^{-1}(U) = [0; +\infty)$. Это множество не является открытым, потому что его точка $0$ не входит в него с некоторой своей окрестностью (эквивалентно, потому что $[0; +\infty)$ нельзя построить из множеств базы, ведь в него входит точка $0$, значит, чтобы его можно было построить из множеств базы, в него должен входить какой-то интервал, содержащий точку $0$, а это неверно). Следовательно, $f$ не является непрерывной.

Правильно ли я рассуждаю?
242 120464
>>463
Ну да, всё вроде верно. А что тебя смущало?
243 120465
>>463
"топологическое" определение непрерывности и определение непрерывности через дельта-окресности совпадают (на $\mathbb R$ выбирается стандартная топология), т.е. одно вытекает из другого и обратно, и это можно доказать

множество $[0; +\infty)$ не является открытым в стандратной топологии на $\mathbb R$
image.png25 Кб, 479x204
244 120466
Анон, вот я знаю что это так работает, но нету интуитивного понимания почему. Есть какой-то видос может?
245 120467
>>466
да и как вообще можно в жизни что-то понять без соответствующего видоса...
246 120468
>>466
а ты вот спроси меня "почему?"
247 120469
>>464
>>465
Почему-то смущал последний шаг. Спасибо за ответ всем!
248 120470
>>469
потому что в R три эквивалентных определения открытого мн-ва, как любые объединения интервалов, как комплемент к замкнутому мн-ву и самое естественное: мн-во, вокруг каждой точки которого есть интервал, полностью содержащийся в рассматриваемом мн-ве
ты последним шагом использовал первое, тогда как гораздо проще заюзать третье, ну и все это аналогично с шарами в R^n работает
мимо
249 120471
>>470
tnx!
250 120473
>>472 (Del)
Потому что не математика, а архитектура
251 120474
>>472 (Del)
Это называется "теория графов".
252 120476
>>459
да, точно так. нашёл доказательство этого утверждения в другой книге. там говорится, что надо рассмотреть ограничение оператора $\mathcal{B}$ на подпространство $\operatorname{Im}\mathcal{A}$ и применить формулу, которая связывает размерность ядра, образа и размерность всего пространства. И выйдет так, что $ \operatorname{Im}\mathcal{B}\vert_{\operatorname{Im}(\mathcal{A})} = \operatorname{Im}(\mathcal{B}\mathcal{A}) $ и $ \operatorname{Ker}(\mathcal{B}\vert_{\operatorname{Im}(\mathcal{A})}) = \operatorname{Ker}\mathcal{B} \cap \operatorname{Im}(\mathcal{A}) $
253 120477
>>475 (Del)
Я не уверен, что у лабиринтов есть какие-то особенные свойства, которые бы вынуждали нас их как-то особо рассматривать. Всё, что я могу представить, исчерпывается стандартной теорией графов и соответствующими алгоритмами (для генерации лабиринтов и их решения).
254 120480
>>479 (Del)
нет, я был не в курсе
IMG1673.jpeg126 Кб, 1000x750
255 120483
>>29047 (OP)
Анончики мои родные, не гоните, лучше обоссыте. Есть ли функция которая переводит индекс (читай число) из 1d в индекс на 2d матрице прямоугольной спирали, разворачивающуюся из центра?
256 120484
>>483
ну так ты эту функцию и нарисовал, ебать её в рот
но тебе же формула нужна, да? уточни вопрос
257 120485
>>484
ну да формула
258 120486
>>484
а точнее нужна формула которая переводит 2диндекс обратно в 1 индекс! Сори за тупой вопрос
259 120487
>>479 (Del)
Пиздабол
Снимок экрана 2025-03-12 203854.png127 Кб, 1643x1055
Матрицы в экономике 260 120488
Добрый вечер.
Аноны, подскажите, как решить эту задачу? Если не трудно, можете расписать шаги решения, потому что я вообще не вдупляю.
Что на что перемножать и какой ответ в итогу должен получиться? "Палка" и нейронки выдают неверное решение и неправильный ответ.
Заранее всем спасибо
261 120489
>>483
А в центре пусто, что ли? Как ты элементы матрицы нумеруешь? $a_{ij}$. где i и j - строчки и столбцы?
262 120490
>>489
по сути да. i j должны быть строчками и столбцами. Я подумал логически - если в условии сказано про 1 единицу чего-либо, значит то количество получившееся в итоге нужно множить на стоимость и объем. Но каким образом это сделать я не понимаю. Если разбивать таблицу на 2 разные матрицы - там как угодно, хоть пытайся (зачем-то) транспортировать - перемножить все равно не получится, ибо число строк и столбцов разное.
photo2025-02-1622-08-37.jpg72 Кб, 720x900
263 120491
А это правда, что статьи в русских математических журналах не котируются, нахуй никому не нужны и на перспективы зарубежом вообще никак не влияют?
Смотрю сейчас, где публикуются локальные глыбы из НГУ, завкафы там и прочие, и чего? Siberian Advances in Mathematics ? А кому это нужно?
Немного даже грустно, что даже эти люди, которые явно умнее и способнее меня, публикуются в каком-то гамне!
Чтобы нормально публиковаться, кем вообще быть надо? Межнарником из Гарварда?
264 120492
>>486
Формула будет $(2x - s(x))^2 + |x| - s(x) + y (s(x) - s(-x))$ при $|x| > |y|$ и $(2y - s(-y))^2 - |y| - s(-y) - x (s(y) - s(-y))$ при $|y| \ge |x|$, где функция $s(x)$ равна единице при положительном аргументе и равна нулю в обратном случае. Красивее формулы не выдумал, кушай эту.
265 120496
>>486
Объебался с латехом.
Формула будет $(2x - s(x))^2 + |x| - s(x) + y (s(x) - s(-x))$ при $|x| > |y|$ и $(2y - s(-y))^2 - |y| - s(-y) - x (s(y) - s(-y))$ при $|y| \ge |x|$ ,где функция $s(x)$ равна единице при положительном аргументе и равна нулю в обратном случае.
266 120497
>>491
Почекал преподов у которых учился - до гойды сильно публиковались в международных журналах, иногда по 2-3 статьи в год (Astrophysics and space science, The European Physical Journal, International Journal of Modern Physics...)
После 22 года случился небольшой перерыв, но в 2024 опять публикуются в этих же журналах.
Какие то у вас в математике не правильные глыбы.
267 120498
>>490
Ты не на то реплаишь. Твоя задача лёгкая, но объяснять её текстом неудобно. У тебя есть количество продукции, на каждую единицу продукции ты проходишься по всему столбцу, для каждой ячейки столбца ты проходишься по всей строке сырья и умножаешь на стоимость.
268 120499
>>491
"Функциональный аналииз" хороший журнал, особенно тем, что не знаю ни одной работы по функциональному анализу оттуда, зато хватает алгтопа и алгема, действительно хороших и прорывных статей.
Правда я всё же сомневаюсь, что его зарубежом особо читают, кроме тех, кто изначально за работами автора следит, хотя вроде его переводят.
269 120503
>>496
благодарю анон, надеюсь ты не напиздел, буду подставлямба
Снимок экрана 2025-03-13 в 14.57.44.png149 Кб, 1350x1030
270 120505
>>496
слушай анон, ты гений, подработка нужна? Чиркани мне t3xXwinpipi44ANUSgmq"QailPUNCTUMco3Uym
image.png130 Кб, 908x329
271 120506
Народы, можете пж проверить моё рассуждение? На пикче несколько непонятно для меня написано, откуда следует, что $y = \mathcal{A}^{}x $? Поэтому я попытался сам доказать.

Поскольку нам требуется доказать равенство операторов, то они должны быть определены на одном и том же векторном пространстве, т. к. $\mathcal{A}^{
} $ определено на $ V^{} $ определим $ \mathcal{A} $ на $ V^{} \cong V$. Зафиксируем канонический изоморфизм $ \varepsilon\colon V \to V^{} $ (где $\varepsilon(x)(f) = \varepsilon_x(f) = f(x) $ ) и положим $ \mathcal{A} (\varepsilon_x) = \varepsilon_{\mathcal{A}x}$, тогда легко проверить, что это отображение линейно. Имеем

\begin{equation}
\mathcal{A}^{
}\varepsilon_x(f)=\varepsilon_x(\mathcal{A}^f)
= \mathcal{A}^
f(x)=f(\mathcal{A}x)=\varepsilon_{\mathcal{A}x}(f) = \mathcal{A}\varepsilon_x(f)
\end{equation}
Тут первое равенство следует из определения оператора $ \mathcal{A}^{}
$ сопряжённого к $ \mathcal{A}^{}$, второе равенство из определения $ \varepsilon_x $, 3-е из определения оператора $ \mathcal{A}^ $ сопряжённого к оператору $ \mathcal{A} $,
и где $ f $ произвольный элемент из $ V^ $.

Мы применили оператор $ \mathcal{A}^{
} $ к произвольному элементу из $ V^{} $ (который в силу канонического изоморфизма имеет вид $ \varepsilon_x $ для некоторого $ x \in V $) и выяснили, что для любой функции $ f \in V^ \Longrightarrow \mathcal{A}^{}\varepsilon_x(f) = \mathcal{A}\varepsilon_x(f)$ а это значит, что операторы $ \mathcal{A}^{} $ и $ \mathcal{A}$ равны.
272 120507
блять... почему большие сообщения так хуёво тут форматируются?
273 120509
>>506
Потому что борда видит * внутри латеха как внешний оператор курсива всё равно.
В следующий раз принеси предыдущую страницу, определение двойственного оператора и как у тебя рефлексивность формулируют.
274 120510
>>507
Макаба с латехом плохо дружит, попробуй избавится от звёздочек.
275 120513
>>509

>и как у тебя рефлексивность формулируют


из текста ясно, что имеется в виду явная формула канонического вложения (изоморфзима в данном случае) $V^{\ast\ast} \to V$

двойственный оператор определён по первому равенству в последней строчке (читать справа налево)
276 120516
>>510
Поскольку нам требуется доказать равенство операторов, то они должны быть определены на одном и том же векторном пространстве, т. к. $\mathcal{A}^{\prime \prime} $ определено на $ V^{\prime \prime} $ определим $ \mathcal{A} $ на $ V^{\prime \prime} \cong V$. Зафиксируем канонический изоморфизм $ \varepsilon\colon V \to V^{''} $ (где $\varepsilon(x)(f) = \varepsilon_x(f) = f(x) $ ) и положим $ \mathcal{A} (\varepsilon_x) = \varepsilon_{\mathcal{A}x}$, тогда легко проверить, что это отображение линейно. Имеем

\begin{equation}
\mathcal{A}^{\prime \prime}\varepsilon_x(f)=\varepsilon_x(\mathcal{A}^{\prime} f)
= \mathcal{A}^{\prime}f(x)=f(\mathcal{A}x)=\varepsilon_{\mathcal{A}x}(f) = \mathcal{A}\varepsilon_x(f)
\end{equation}
Тут первое равенство следует из определения оператора $ \mathcal{A}^{\prime \prime}
$ сопряжённого к $ \mathcal{A}^{\prime}$, второе равенство из определения $ \varepsilon_x $, 3-е из определения оператора $ \mathcal{A}^\prime $ сопряжённого к оператору $ \mathcal{A} $,
и где $ f $ произвольный элемент из $ V^\prime $.

Мы применили оператор $ \mathcal{A}^{\prime \prime} $ к произвольному элементу из $ V^{\prime \prime} $ (который в силу канонического изоморфизма имеет вид $ \varepsilon_x $ для некоторого $ x \in V $) и выяснили, что для любой функции $ f \in V^\prime \Longrightarrow \mathcal{A}^{\prime \prime}\varepsilon_x(f) = \mathcal{A}\varepsilon_x(f)$ а это значит, что операторы $ \mathcal{A}^{\prime \prime} $ и $ \mathcal{A}$ равны.

Заменил звёздочки штрихами, посмотрим выйдёт ли. + Все необходимые отрывки из книги приложил.
277 120517
+ рефлексивность
278 120519
>>516
Ну да, всё верно. Только как по мне это всё равно абуз нотации писать равенство операторов этих, лучше уж определить изоморфизм операторов по аналогии с изоморфизмом линейных представлений (это как раз частный случай, если взять представление одноэлементного множества):
$\mathcal{A}: V\to V, \ \mathcal{B}:U\to U$ изоморфны, если диаграмма
$$\begin{array}{ccc}
V & \xrightarrow{\mathcal{A}} & V \\
\downarrow{\sim\, \vareps} & & \downarrow{\sim\, \vareps} \\
U & \xrightarrow{\mathcal{B}} & U \\
\end{array}$$
279 120528
>>519
Бля, ну короче вы поняли, вертикальные стрелки - это изоморфизм. И опретаорты изоморфны, если диаграмма коммутативна.
image.png11 Кб, 632x319
280 120530
первая формула вылазит, как только мы описываем квадрат вокруг окружности. а как от неё перейти ко второй?, учитывая что n -эта функция f(S), то есть надо ещё что то там решать и вычислять n для каждой окружности, а k - это просто константа < 1
281 120531
Почему интеграл от 1/x это ln|x|, а не lnx, ведь есть производная от ln(x)? Или это связано с определенностью, что может быть 2 числа и для уточнения мы берём положительное?
282 120532
>>531
чо? ln(x) вообще не определена при x < 0, как у неё может быть там ещё и производная
283 120533
>>519
да, спасибо. интересная диаграмма. я проверил, что если подставить вместо $ U $ $ V^{\prime \prime}$, вместо $ \mathcal{B}$ $\mathcal{A}^{\prime \prime} $ и стрелку вниз в качестве канонического изоморфизма, то диаграмма будет коммутативной. прикольно.
17419384158019085447722331471156.png16 Кб, 517x539
284 120534
>>532
Вон (lnx)', никакого модуля
285 120535
>>534
попробуй хуйца таракан
286 120536
>>535
>>534
давайте будем оскорблять людей в интернете, указание ответа займёт не намного больше времени, чем написание бестолковых комментариев.

в таблице просто не указаны области определений. функция натурального логарфима не опеределена при аргумента < 0, а значит, на этой области не может быть и её производной.

Какова была скорость машины, на пути, на котором она не ехала?
287 120537
>>536
нет, она там не стояла, её там вообще не было.
288 120538
>>536
*не будем оскорблять
289 120539
>>536
Спасибо большое
290 120541
>>536

>давайте будем оскорблять людей в интернете


давайте
291 120542
>>536

>давайте не будем оскорблять людей в интернете


И зачем нам тогда такой интернет?
image.png168 Кб, 1467x145
292 120543
Вроде условие не сложное, но чёт не могу решить. Позор... Не могу показать, что пересекаются по нулю эти подпространства...
293 120544
>>29047 (OP)
Что такое доказательство? Никогда это не понимал, какие правила? Формализованы ли они? Или нужно как то выразить непротиворечие? Памагите
Мимо погромист 500к наносек, вкатун в мл математику.
294 120545
>>543
попробуй для $p = 1$
295 120546
>>544
ничего. не существует такой вещи как доказательство. Ничего не может быть доказано ни логически, ни эмпирически. Учитывая эпистемологическую природу человеческого вопрсиятия. Провели эксперимент и доказали что частица движется быстрее света? ну молодцы, а где гарантия что вы всё правильно сделали? 1000 раз повторила? окей, а мне откуда знать, что вы это реально 1000 раз повторили, а не просто сказали, что 1000 раз повторили? а может 1001 раз вышло бы иначе? а может завтра выйдет иначе? ну ладно,с физикой беда, может с математикой всё хорошо? кто занимается доказательством сложных теорем? единицы или небольшое число узких специалистов. на проверку некоторых доказательств нужны месяцы тяжёлой работы. специалист заключает, что доказательство верно/неверно. остальные ему верят. где гарантия, что он тоже не схалтурил или случайно не ошибся? Было у тебя так, что ты смотришь на уравнениеЮ функцию, уверен, что она сработает правильно, а они оказывается некорректной? Уверенность это не гарантия успеха. Доказателство - это просто отношение к предложению, вера в то, что оно что то подтверждает
296 120547
>>546
Ну на пример, докажите, что две прямые перпендикулярны. Вот они нарисованы и перпендикулярны, ежу видно, но сама постановка вопроса ставит меня в тупик.
297 120548
>>547
схуяли ежу понятно? откуда ты знаешь чо там ёж понимает? катись к тараканам своим под матрас
298 120549
>>546

>не существует такой вещи как доказательство


В математике существует.

>Ничего не может быть доказано ни логически


Может.

>на проверку некоторых доказательств нужны месяцы тяжёлой работы


>специалист заключает, что доказательство верно/неверно


Мелкобуква, ту же понятия не имеешь о чём говоришь. Ты сначала говоришь, что логических доказательств не существует, а потом объясняешь это тем, что специалист(?) может напиздеть. Это же шизофазия без логических связок просто.
299 120550
>>547
Нужно вывести перпендикулярность этих прямых из условия задачи и аксиом геометрии.
300 120551
>>548

>тараканам


Опять на связь выходишь, мудила?
301 120552
>>549
всё так. есть такая вещь как "схватывание", или логическая интуиция. ты смотришь на "доказательство" и думаешь, что оно верно, думаешь что это стало для тебя "очевидным" что ты ухватил суть. предложения, которые способны вызвать такое чувство называются "доказательствами".
>>550
нет долбоёб нужно на глаз определить примерно они перпендикулярны или нет
302 120553
>>547
у тебя есть определение, что значит перпендекулярно, и у тебя есть какие-то условия, которое заданы изначально. с помощью аксиом и доказанных теорем нужно вывести (логически), что определение перпендекулярности выполнено при заданных условиях. это доказательство
303 120554
>>553
Это звучит так же, как докажи, что это баран. Ну вроде мекает, с рожками, что еще нужно то. Тяжело.
304 120555
>>552
Ты слабоумный дурачок, экстраполировавший скептицизм Юма на математику.

>ты смотришь на "доказательство" и думаешь, что оно верно, думаешь что это стало для тебя "очевидным" что ты ухватил суть


Нет, любое доказательство может быть сведено к набору переходов из аксиом формальной системы, и тогда проверка корректности доказательства вычислима чисто алгоритмически.
305 120556
>>555
что то доказать пытаешься? не получится доказательств ведь не существует
306 120557
>>556
Пытаюсь внушить тебе ощущение твоей интеллектуальной бедности.
307 120558
Хеллер, кстати, тоже придерживался мнения, что никаких доказательств нет. >>546 - даже напомнило ту его пасту про это
308 120559
>>558
Хитлер?
309 120560
>>559
heller, хотя его уже никто не помнит наверное, он это в плане изучения математики писал, прикольный персонаж был
310 120561
>>558

>Хеллер


Какой-то хрен с жж?

>придерживался мнения, что никаких доказательств нет


И как выглядела его позиция? Что то что принято считать доказательством в эмпирической науке, строго говоря, доказательством не является, мысль довольно примитивная и очевидная. Если он про математические доказательства, то тут он, конечно, неправ. Ну либо у него совсем какая-то нетривиальная позиция.
image.png150 Кб, 870x337
311 120562
>>561

>жж?


Вообще у него свой сайт был на который он выкладывал все размышления

>И как выглядела его позиция?


Ну просторах интернета еще валяется его план изучения математики, там несколько страниц про док-ва
312 120563
>>562
Ну, первый пункт с пика относится к риторике и в математике может быть полезен разве что с педагогической точки зрения. Второй пункт, я так понимаю, отсекает эмпирические доказательства и правдоподобные гипотезы. С третьим пунктом можно только согласиться.
Тут следует понимать, что слово "доказательство" означает в эмпирической науке одно, в математике и философии другое, а в риторике третье. И поэтому эти понятия смешивать не стоит, а то может получится такая каша в голове, как у анона выше, а то и перекос в обратную сторону, как у любителей научпопа.
313 120564
>>545
даже так не выходит...
314 120565
>>564
беда
315 120567
>>565
а хотя нет, вроде получилось

Пусть $ W = \operatorname{Im}\mathcal{A} $ и рассмотрим ограничение оператора $ \mathcal{A} $ на $ W $, тогда из условия следует, что $ \mathcal{A}W = W $. Выберем произвольный базис в $ W = \left<e_1,\ldots,e_k \right>$, тогда образ $ W = \mathcal{A}(W) $ порождают вектора $ \mathcal{A}(e_1), \ldots, \mathcal{A}(e_k) $. Эти вектора линейно независимы, поскольку это система из $ k $ векторов в $ k$-мерном векторном пространстве порождающая его. А значит, $ \mathcal{A}(x) = \sum_{i=1}^{k} x_i\mathcal{A}(e_i) = 0 \Leftrightarrow x_i=0, i = 1,\ldots,k$, то есть $\operatorname{Im}\mathcal{A} \cap \operatorname{Ker}\mathcal{A} =0 $. А поскольку для любого линейного оператора верно $\operatorname{dim}\operatorname{Im}\mathcal{A} + \operatorname{dim}\operatorname{Ker}\mathcal{A} = \operatorname{dim}V $ то получаем, что $V= \operatorname{Im}\mathcal{A} \oplus\operatorname{Ker}\mathcal{A} $
316 120568
>>558
А он же не в рашке был? Или съебал из неё?
317 120569
>>567
это правильно
318 120570
>>569
А для произвольного $ p $ применим идею из случая $p = 1$. По условию $ \operatorname{Im}\mathcal{A}^p = \operatorname{Im}\mathcal{A}^{p+1} \Rightarrow \mathcal{A}^pV = \mathcal{A}^{p+1}V$.Применим оператор $ \mathcal{A} $ к последнему равенству $ p $ раз и используя это соотношение, получим $ \mathcal{A}^pV = \mathcal{A}^{p}(\mathcal{A}^pV)$,
И теперь применим идею из случая, когда $ p=1$ к подпространству $ \mathcal{A}^pV $ и оператору $ \mathcal{A}^p $, дословно повторяя рассуждение из случая $ p = 1 $ получим нужное утверждение.
319 120571
>>568
Был в рашке, потом уехал вроде
320 120572
>>563

>Второй пункт, я так понимаю, отсекает эмпирические доказательства и правдоподобные гипотезы.


Неее, второй пункт про доказательства именно в математике
321 120573
>>572
Тогда я не согласен.
322 120574
>>571
в ебучей пидорашке, ты хотел сказать? в нефтедыром пынебабве?
323 120575
>>570
можно просто применить к $B = A^p$

>Применим оператор $ \mathcal{A} $ к последнему равенству $ p $ раз


здесь лучше использовать индукцию
324 120579
>>574
Не говори так, мне неприятно
325 120580
Какую программа использовать для графов, чтобы всё считала итд?
326 120582
>>580
тараканью
image.png1,2 Мб, 1600x800
327 120583
>>404
Я разобрался! Коротко говоря, мне помогло то, что я наткнулся на modus ponens.
328 120584
>>580
Смотри в сторону графовых БД, там есть язык запросов в нем и посчитаешь.
329 120585
>>580
что за графы?
330 120586
>>585
Дракулы
331 120588
Расскажите, для чего нужна группа классов дивизоров и как она связана с задачами криптографии? Как себе представить интуитивно, что это за такой объект? Для чего вообще нужны дивизоры?
332 120589
>>575
Ну да, тут совсем простая индукция. Вроде именно так я сделал, применил к $ A^p$.
image.png46 Кб, 1567x145
333 120590
А из чего следует существование такого $ v$? Это же совсем не очевидно.
334 120591
>>590
Ну логика наверное такая. Если у тебя операторы $A_1, A_2,..., A_{n-1}$ лнз, то тогда $A_1 v, A_2 v,..., A_{n-1}v$ лнз (по определению лнз набора операторов).
Теперь пусть у нас $A_i = A^{i}$ для какого-то (достаточно хорошего) $A$. Достаточно хороший = его первые $n-1$ степеней лнз. Если $A$ и $A^2$ лнз, то $A$ не кратен единичному, то есть $A$ и $I$ лнз, то есть $Av$ и $v$ лнз для какого-то $v \in X$. По той же логике линейно независимые $v$ и $A^{i}v$ для любых $i \in \{1,2,...,n-2\}$.
А вот почему $A^{n-1}$ не может быть единичным я не знаю. Выше по тексту было какое-то ограничение, что $A$ - не нильпотентный?
335 120592
>>591
Хотя нет, нильпотентность тут не причём конечно. Но какое-то ограничение на $A$ должно быть, думаю.

>если $A$ и $A^2$ лнз, то $A$ не кратен единичному


Тут должно быть "если $A$, $A^2$, и $A^3$ лнз".
336 120597
>>584
Какая открытая лучшая?
image.png53 Кб, 1664x235
337 120598
>>591
Вот условие теоремы.
338 120599
>>591
ЛНЗ набора операторов вроде не так определяется, линейные операторы же образуют векторное пространство, соответственно можно рассматривать обычные лин. комбинации. Тогда операторы $ \mathcal{E},\mathcal{A} ,\ldots,\mathcal{A}^{n-1}$ лнз если $\lambda_0\mathcal{E} + \lambda_1\mathcal{A} + \ldots + \lambda_{n-1}\mathcal{A}^{n-1} = \mathcal{O} \Leftrightarrow \lambda_i = 0 \forall i$ где $ \mathcal{O} $ тождественно нулевой оператор.
339 120600
>>599
Так я знаю, это эквивалентно же. Поэтому мы и говорим, что есть такой v, что. У тебя из лнз операторов (в их своём пр-ве) индуцируется лнз набора векторов в базовом.
340 120601
>>600
А если, например, $ v \in \operatorname{Ker}(\mathcal{A}^k)$, то тогда они не будут лнз, я имею в виду векторы $v,\mathcal{A}v,\ldots,\mathcal{A}^{n-1}v $
341 120602
>>601
Ну да, и поэтому мы можем только сказать, что существует какой-то $v$, для которого всё хорошо, я же об этом и писал. Потому что если бы не существовало, то операторы не были бы лнз
342 120605
>>590
это дейтсвтительно очевидно (хотя в условии опечатка: последоватльность операторов должна начинаться с $A^0 = I$), а именно: пусть $\sum \lambda_i (A^i v)$ - нетривиальная линейная комбинация, тогда $\sum \lambda_i (A^i v) = (\sum \lamda A^i) v$, и если предположить, для любого $v$ эта комбинация даёт $0$, то получим $(\sum \lamda A^i) = 0$, т.е. операторы $A^i$ линейно зависимы

словом, всё видно мгновенно, если явно записать формулу для линейной зависимости
343 120606
>>605
я ультратупой, ибо не понимаю, вот смотри утверждается, что $\exists v\neq 0 \in v$ что $ v,\mathcal{A}v,\ldots,\mathcal{A}^{n-1}v $ линейно независимы, ты пытаешься от противного, то есть предположим что это не так, тогда отрицание этого утверждения будет выглядеть так $\forall v\in V \ \ v,\mathcal{A}v,\ldots,\mathcal{A}^{n-1}v $ линейно зависимы, то есть для каждого $ v $ существует свой набор лямбд не всех равных нулю, что $\lambda_0v+\lambda_1\mathcal{A}v + \ldots + \lambda_{n-1}\mathcal{A}^{n-1}v = \underbrace{(\lambda_0\mathcal{E} + \lambda_1\mathcal{A} + \ldots+\lambda_{n-1}\mathcal{A}^{n-1})}_{=\mathcal{B}}v = 0 $ но это вовсе не означает, что $ \mathcal{B} $ является тождественно нулевым оператором, ведь так?
344 120608
>>590
>>606
Просто возьми $v=I$
345 120611
Сейчас решаю одну задачу. Для её решения нужно решить систему линейных рекуррентных уравнений.
Такое уравнение выглядит так: x_{i+1}=Ax_{i}, где x_j столбец n на 1, а A квадратная матрица размерности n на n. Возникли такие несколько вопросов:
1) как такое решать?(была мысль через собственные векторы и числа для оператора-матрицы A, но тогда я получаю решение вида x_j=l^j*h, где l и h собственное число и соответствующий этому числу собственный вектор, но для такого надо, чтобы x_0=h. А вот если x_0 вообще любой вектор(столбец), то как быть?)
2) как определить наличие устойчивых состояний?
346 120612
>>611
Если я правильно тебя понял, то тебе просто надо посчитать x_n = A^n x_0, где A и x_0 даны. Если A диагонализируемая, то просто диагонализируй и вычисли A^n. Если нет, то переведи A в Жорданову нормальную форму J, вычисли J^n, вычисли A^n. Не знаю, что такое "устойчивые состояния", если тебя интересует, сходится ли A^n к нулю, то посчитай собственные значения.
347 120613
>>606
>>590
Ты прав, из такого рассуждения следует лишь то, что для любого вектора можно найти такой набор коэффициентов, априори они, конечно, разные для разных векторов.
Мб у тебя там какие-то доп.условия есть, но если правильно помню, в общем случае твой скрин доказывается не то чтобы совсем тривиально, проще всего через некоторую машинерию, связанную с минимальным многочленом и что-нибудь типа разложения на циклические подпространства. Есть теорема, что если минимальный многочлен совпадает с характеристическим (что правда в твоём случае, т.к. минимальный многочлен имеет степень n, а характеристический должен на него делиться), то такой вектор есть.
мимо
348 120614
>>608
Ты норм?
349 120615
>>614
Я корм
350 120617
>>591
>>600
Из определения ЛНЗ операторов можно ведь только сделать вывод о существовании для каждой нетривиальной комбинации подходящего v, который не лежит в ядре этой комбинации. Этого не хватит для лнз системы векторов, нужны ещё какие-то рассуждения, не?
351 120618
аноны, есть ли доска по физике?
понятно, что математика это всего лишь инструмент для физиков, но всё же
image.png218 Кб, 1017x1045
352 120619
>>613
Да, в этом случае характеристический многочлен совпадает с минимальным, но штука в том, что доп условий тут нет, поле, которое здесь фигурирует, произвольное, не обязательно алгебраически замкнутое. Вот, вроде на на пикче как раз то что нужно, рассуждение, которое вроде для любого поля работает, но я его несколько не понимаю поскольку английский у меня слабый. Почему тут $V$ разлагается в прямую сумму? Почему $\dim(V_i)=\deg(P_i^{m_i})$? ну и так далее, суть доказательства пока не ясна.
353 120620
>>618

>математика это всего лишь инструмент для физиков


Разбил бы тебе ебало за такое.
354 120621
>>620
Хотя у Арнольда была такая же позиция, но уж очень она мерзкая.
image.png420 Кб, 553x680
355 120622
356 120623
>>619
Мб есть книжка Hoffmann, Kunze, Linear Algebra на русском, там про это много что есть в большой общности, но при этом без серьёзной алгебры.
Тут есть разложение на T-инвариантную прямую сумму. Характеристический многочлен будет состоять из произведения ограничений T на эти подпространства. Мне кажется, конкретно тут можно сказать, что т.к. по Гамильтону-Кэли характеристический многочлен оператора зануляется оператором и так как у нас прямая сумма ядер, то $P_i^{m_i}[T]$ даёт ноль на ограничении на $V_i$ и не даёт, если ограничить на любое другое $V_j$, то характеристический многочлен ограничения будет в точности $P_i^{m_i}$.
Но я не особо тщательно продумывал, лучше проверь и/или дополни.
357 120624
>>618
/sci/
358 120625
>>623
А, ну и размерность пространства совпадает с характеристическим многочленом ограничения (из блочного вида в соответствующем базисе понятно).
359 120626
>>625
*совпадает со степенью
360 120627
>>620

>Разбил бы тебе ебало за такое.


В биореактор, сука.
361 120628
>>624
спасибо, но там шизы((
хотя и тут не лучше
362 120629
>>618
Думаю, было бы здорово, если бы отдельный раздел организовали для инженеров и физиков.
Это были бы эпические войны и рождения истин в бурных обсуждениях.
Абу, ты где?
Стране нужны специалисты.
363 120630
>>629
Пришёл бы шизик с бесконечным сжатием информации и засрал бы весь раздел.
364 120631
>>623
спасибо, пока рассуждение мне не поддаётся...
365 120632
>>629

>отдельный раздел организовали для инженеров и физиков


Инженеры разные бывают, но всё же это другое.
Это как взять и смешать кодеров с математиками в одну доску. Только у одних математика заканчивается бинарными числами, а у других это лишь одна из тем школьного уровня.
366 120633
>>632
Другое, но опираются на одни и те же законы. Каждый приобретёт что-то своё в обсуждении. Физикам тоже будут полезны инженерские выкладки, хотя бы с практической точки зрения.
367 120635
>>630
сжал бы весь раздел
368 120640
>>631
Ну, задай ещё вопрос какой
image-proxy (1).jpg17 Кб, 640x360
Дарова двачеры, у меня есть предмет алгебра и геометрия (или линейная алгебра вроде)в унике 369 120643
Дарова двачеры, у меня есть предмет алгебра и геометрия (или линейная алгебра вроде)в унике(который я в рот ебал),по нему в библиотеке мне дали книгу Кострикин Введение в алгебру , но там 500 страниц и мне как-то впадлу это читать учитывая, что эта хуйня мне не интересна, Есть какая-то книга где в раза два страниц меньше, и все написано по факту, про всякие матрицы, моноиды, изоморфизм, и желательно очень понятно и простым языком, чтобы такой долбоёб как я понял эту хероборину. Пж
370 120644
>>643
Книга Кострикина прекрасна и в ней это всё хорошо написано, но предназначена для тех, кому предмет интересен и кто намерен изучать его глубоко. Те, кому предмет не интересен, занимают в университете чужое место, кроме того, они отнимают время и силы у преподавателей. Такие люди должны пойти нахуй, потому что мудачьё ёбаное
371 120645
>>644
Да, бля я шёл на программиста, а не на ебаного математика, я хочу делать ебаные сайты, приложения, и игры, а не вот это все
372 120646
>>645
Если ты хочешь стать кодомакакой, то университет не нужен. Если тебе нужно что-то большее, то советую математику полюбить.
373 120647
>>646

>Если тебе нужно что-то большее, то советую математику полюбить.


Когда я слышу такие пафочные слова, обычно никто не говорит, что это такое "большее" и где на работе можно применить математику. Потому что применений у нее почти нет за исключением криптографии, куда пустят только с разрешения ФСБ.
374 120648
>>647
Либо это будет 3.5 вакансии на страну, откуда уходить некуда и страшно - потому что твой опыт нигде не нужен.
375 120649
>>647
Слова настоящего кодомакакена.

>применений у нее почти нет


Ну вот ты про игрушки сказал, думаешь там графика сама собой рисуется?
>>648
Я не понимаю, а зачем тебе университет? Иди и опыт нарабатывай.
376 120650
>>645
Дихлофос несите
377 120651
>>646
Университет нужен, чтобы от армии откосить.
>>647
Работаю прикладным мотемотиком в RnD одной корпорации (не российской офк). Тут много погромистов, которые математику юзают. Но таких мест мало, да.
378 120652
>>650
Ты тупорылый идиот, который не видит красоту программирования со всех сторон. Ты видишь только отдельные аспекты, которые тебе не нравятся. Если ты на секунду перестанешь считать всех тараканами, задашься вопросом, почему люди программируют, то ты начнёшь видеть, в чём сильные стороны кодинга.
379 120653
>>652
таракан, пиздуй нахуй отсюда
у вас своя доска есть
380 120654
>>653
Вахтер, спокойно, сижу где хочу. Вот пришел тебя говном накормить, открывай ротеш.
381 120655
>>643
В последнем 3 томнике Кострикина в первом томе страниц 200 где то
382 120656
>>654

>Вот пришел тебя говном накормить


всё так, тараканы ничем другим больше не занимаются
383 120659
>>656
это правда, большинство погромиздов занимается преимущественно тем, что кормит говном заказчиков
мимо таракан
384 120662
>>29047 (OP)
Го обнимашки!
image.png256 Кб, 640x346
385 120664
/матх это
1 сап двач решите за меня домашку по матану которая гуглится за 10сек
2 сап двач как вкатится в матиматеку со знанинями на уровне 7 класса
3 сап двач я кодер....
Соглы??
386 120669
Заранее извините за матлогику
Значение этого высказывания определено?
$(\forall x \in \{0\})[\frac{x}{x} = 1]$
Мои мюсли джокера за то, что определено (и является $\bot$): Равенство это логическое выражение и нам по идее не важно, определены ли его операнды, нам для значения "Истина" важно только, чтобы значениями операндов был один и тот же математический объект, в любом противном случае (т.к. исключённое третье) это "Ложь"
Мюсли джокера на тему того, что значение не определено:
$(\forall x \in \{0\})[\frac{x}{x} = 1]$ эквивалентно $\frac{0}{0} = 1$, значение операнда слева не определено, следовательно, значение всего выражения не может быть определено, следовательно, значение исходного выражения не определено
387 120670
>>669
Я если что серьёзно спрашиваю, я вообще начал читать про О.Д.З. и тождества, но в голову приходят всякие пограничные случаи идиотские на которые автор учебника кладёт хуй
388 120671
>>669
Пока я так понял, что конвенционально принят вариант №2. Ну т.е. значение $\exist \in \{0, 1, 2\}[\frac{x}{x} = 1]$ неопределено т.к. при одном из значений из предметной области оно неопределенно
389 120672
>>671
И условно значение $\frac{x}{x} \equiv 1$ для $\mathbb{D}_x = \mathbb{R}$ не определено; для $\mathbb{D}_x = \mathbb{R} \setminus \{0\}$ оно $\top$, а для напр. $x \equiv 13$ и $\mathbb{D}_x = \{1,2,3,4\}$ оно $\bot$
390 120673
>>671
В итоге вопрос: я прав или нет?
391 120679
>>669
Предложения первого порядка могут включать семантические функции, определённые на каком-то универсальном несущем множестве. Либо доопределяй свою функцию, либо меняй несущее множество.
матричный оператор, собственные числа и векторы. 392 120684
Привет всем. Нужна помощь.
Допустим, что есть A как матрица n на n с элементами их R. Пусть l_1...l_n собственные числа(все разные), а h_1...h_n собственные векторы(столбцы), соответствующие собственным числам.
Пусть x - вектор-столбец размерности n на 1 с элементами из R.
Столбец x можно представить в базисе собственных векторов: x=c_1h_1+...+c_nh_n. Из свойств собственных векторов следует, что A^k x= c_1(l_1)^k h_1+...+c_n(l_n)^k h_n.
У меня есть некоторая гипотеза, что если l_1 и l_2 комплексно-сопряженные числа, то c_n(l_1)^k h_1+c_2(l_2)^k h_2 будет столбцом действительных чисел размерности n на 1.
К сожалению, доказать это строго у меня не вышло. Если кто-нибудь знает доказательство для такого, пожалуйста, дайте.
393 120685
>>684

> c_n(l_1)^k h_1+c_2(l_2)^k h_2


Ничего не понятно. Здесь должно быть $c_1$ вместо $c_n$? И вообще, юзай латех.
Стобцы действительных чисел это не очень понятно, ты имеешь в виду, что у этой линейной комбинации будут вещественные координаты в твоём базисе?
Тут ты фактически берёшь только определённые компоненты разложения твоего оператора $А$, соответствующие $h_1$ и $h_2$. То есть ты рассматриваешь новый оператор, который выглядит как $diag(ke^{i \phi}, ke^{- \phi}, 1,1,...,1)$ для каких-то $k \in \mathbb{R}, \phi \in [0, 2 \pi)$. Ну так это просто растяжение + вращение в плоскости, конечно же оно будет оставлять вещественные координаты вещественными.
394 120686
>>685
А как в дваче вставлять латех?
395 120687
Много раз слышал что неправильно заучивать математику, её надо именно понимать и тд, что под этим обычно подразумевают ? Я пару раз пробовал разобрать какие-то простейшие арифметические действия с дробями, почему они именно такие, но ничего не получилось
396 120688
>>686
(знак доллара) твои латех (знак доллара)

>>687
Заучивать действительно ничего не надо. Нужно понимать, откуда что берётся, и решать задачки. Видишь доказательство какого-то свойства дробей - попробуй сначала доказать его сам. Не получилось - ничего страшного, спокойно тихо не спеша иди по доказательству, не пропуская шагов. Тебе нужно понимать логику происходящего, а не заучивать правила.
397 120689
>>29047 (OP)
Математики, как заработать миллиард?
398 120690
>>689
ртом и/или жопой
399 120691
>>690
Я не настолько математик
400 120692
>>691
тогда укради
401 120693
>>689
Для начала найди на дороге рубль. Потом повтори то же самое миллиард раз минус один.
402 120694
>>693
Ну а где ваши идеи про лотерейки, биржи и прочие вероятностные распределения?
403 120696
>>694
Мартингейл + быстроденьги до первой победы после 2 миллиардов.
404 120697
>>696

>2 миллиардов


Дай
405 120698
>>697
НЕ ДАМ
406 120701
>>697
Я же написал: быстроденьги или ещё какие займы
image.png127 Кб, 380x200
407 120703
Как развиваться если работаешь?
Наверное, нужно идти в магистратуру, потом аспирантура, кфмн, но я работаю 5/2 и работа не связана с научными интересами. Бросать работу и уходить в науку не вариант.
Читаю в свободное время продвинутые книжки, пытаюсь читать статейки, но чувствую что этого мало. Нужно с кем то общаться, найти научника и написать хотя бы одну статью.
408 120704
>>703
Меня гложит чувство нереализованного потенциала.
409 120706
>>703
Работай 3/4. Или замени на синекуру. Или поставь себе цель перекатиться со временем в работу, где "развитие" нужно, чтобы стать специалистом лучше.
410 120707
>>703
Реалистично? Никак. Продолжай делать, что делаешь. Смирись с тем, что для тебя это хобби. Ничего страшного в этом нет. Можешь что-нибудь печатать "в стол", или завести бложик, но, думаю, лучше просто продолжать читать книжки.
800px-Kotina.jpg95 Кб, 800x994
411 120708
Объясните нубу, почему 0!=1?
412 120710
>>688

>Тебе нужно понимать логику происходящего


Опять же, я не совсем понимаю что это значит, понимать как и до какой степени ? Если я например забуду концепцию дробей, я должен сам её вывести и все операции с ними ? Для меня просто та же концепция сложения и вычитания дробей кажется неестественной, особенно когда её пытаются переложить на что-то материальное, по типу кусков пирога. То есть условно если мне дадут определение дроби и попросят их сложить, я ничего не сложу, для меня из определения дроби никак не вытекают операции с ними, а должны ?
413 120711
>>703
будь я научником, я бы не стал брать студента, который работает
414 120712
>>708
Пустой набор это тоже легитимная перестановка.
415 120713
>>29047 (OP)
Чем заменить чай и кофе?
416 120718
>>712
обоснуй
417 120720
>>718
Потому что существует пустое множество. Поменять местами мы ничего не можем, следовательно перестановка для пустого множества существует только одна.
The Ultimate Fighter (TUF) 31. Ep.01 - A Notorious Return.mp4snapshot27.55[2024.11.1515.57.44].jpg180 Кб, 1920x1080
418 120721
Есть какие-нибудь годные онлайн тренажеры по математике, чтобы типа как анки, например выбираешь тему, например сокращение дробей, или решение уравнений, или там квадратные корни, и оно тебе накидывает задачи в увеличивающейся сложности по возрастающим интервалам времени пока не усвоишь?
419 120722
>>721
г-ди, какие же зумеры дегенераты
image.png20 Кб, 90x90
420 120723
>>706
>>707
>>711
Мой план А это заработать денег на 2 года сычевания учебы и поступить в магистратуру. Возможно к тому моменту я вообще выгорю и забью на всё, буду сидеть играть в игори под пиво, но надеюсь что нет.
Книжки читаю, теоремки доказываю, задачки прорешиваю, хз насколько меня хватит. Пока жизнь более-менее стабильная я самообучаюсь понемногу. Ну а что будет дальше гадать не хочется.
nelson-hala2.png498 Кб, 500x500
421 120725
422 120728
>>725
это тараканиха
423 120729
>>720
Так ты конкретизируй, без абстракций, формулы, логика, где всё?
Пустой пиздёжь не нужен.
Нужны прямые доказательства.
Твои слова без доказательств - ничто.
424 120730
>>729
Чё ты несёшь, мудак? Какие нахуй доказательства? Факториал это функция, которая задана именно так. Чтобы понять почему именно она так задана, можно прибегнуть к более-менее естественным интерпретациям. Доказательств чего ты требуешь, шизик?
425 120731
>>730
Ты уёбок тупорылый петух!
Надо каждое своё слово подтверждать математически, а не абстрактным пиздежом, тем более если это просят сделать, тупой хуесос, изначально!!!
426 120732
>>731

>почему 0!=1?


Потому что так задана функция факториала, полоумный ты говноед. Устраивает?

>подтверждать математически


Да ты же нихуя в математике не понимаешь, вот и не лезь, шизик.
427 120733
>>728
Пошел на хуй, петух
428 120734
>>732
Ты сам ничего не понимаешь в матиматеке!
429 120735
>>734
Ты меня разоблачил.
430 120736
Я один не могу мысленно нарисовать пяти- и шестиугольное сечение куба плоскостью?
431 120737
>>736
да, ты один
432 120738
Бля народ, поясните тупому.
мне вот дз на сестр делать бля. я нихуя не понимаю в интегралах.
я понимаю как они в конце там сокращаютлся или вычисляются, но до этого типа как это развернуть И ВАЩЕ ЧО ДЕЛАТЬ мля, я ваще тупиздень

а еще я ненмого выпил, мда
433 120739
Есть какие нибудь понятные видео как складывать Дроби? Чтобы интуитивно обесняли приколы с цифроми на верху и под черточкой?
434 120740
>>732
Если не можешь доказать, то никогда не пизди, хуесос!
Это математика, она вся строится на доказательствах!
Нет доказательства - не наука!
17057297543570.mp45,2 Мб, mp4,
640x360, 0:43
435 120741
436 120742
В чём суть и польза от этого открытия, если по итогу самое простое число всё равно равняется 1?
https://ru.m.wikipedia.org/wiki/%D0%9D%D0%B0%D0%B8%D0%B1%D0%BE%D0%BB%D1%8C%D1%88%D0%B5%D0%B5_%D0%B8%D0%B7%D0%B2%D0%B5%D1%81%D1%82%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE
437 120743
>>29047 (OP)
а чо за формула внизу на 4 пике?
438 120744
>>740
науки строятся на предложениях. некоторые из этих предложений называются аксиомами, их нельзя "опровергнуть" или "доказать".
тебе тут то же само сказали. определения функций не предполагают ложности.

пусть у тебя будет факториал от будет семёркой, это всего лишь другое определение факториала, вот и всё. в некоторых моментах удобнее одни определения, в других другие. факториал это тебе не табуретка, на которую ты можешь сесть, разобрать или бросить в кого нибудь, факториала вообще не существует.
439 120745
>>743
Ускорение движения.
440 120746
>>745
а чо за задачка, где ей надо интегрировать, решить квадратное уравнение, тригонометрическое уравнение, да ещё и ускорение посчитать?
441 120747
>>744
анон требует, чтобы ему "математически" доказали утверждение, которое он "математиматически" не сформулировал (как утверждение, нуждающееся в доказательстве). пусть формулирует, потом спрашивает про доказательство. что тут объяснять
443 120749
>>651
Какого уровня? Можно под математикой пучкование пынямать, а можно решение систем уравнений методом Галуа.
444 120750
>>749
Гауса
быстрофикс
445 120751
>>749

>методом Галуа


Ганула
446 120752
>>29047 (OP)
Матлаб или Петухон?
447 120753
>>752
Coq Rocq ТАРАКААААН
448 120754
>>751
не думал, что людей бусифицируют, чтобы заставить их решать уравнения
17429175575210.png12 Кб, 330x471
449 120755
Сорри за такой тупой вопрос, но можете обьяснить пожалуйста, почему перед запятой ставим 0(оранжевый) ведь после остатка мы снесли только одно число, значит 0 не нужен, но почему то в ответе он есть
450 120756
>>752
То, чем пользуется другие люди вокруг тебя.
451 120757
>>755

>только одно число, значит 0 не нужен


Нет, ты два снёс.
1, 16, 168 не делятся на 5600, а 1683 делится с остатком.
5600x3=1680, остаток 3
далее мы сносим следующую цифру бесплатно, в этом примере это 9, НЕ записывая ничего в частное. Получаем 39. Оно не делится на 5600. И тут мы уже ставим 0 и сносим вниз следующее число, 2.
452 120758
>>757
В смысле 5600 * 3 =1680? Это же будет 16800, 16839 - 16800 = остаток 39, сносим одно число 2
image.png342 Кб, 1674x863
453 120762
ПУУУУУУУУЧЧЧЧККККК
454 120764
>>762
о да, это очень пучковый автор
у него есть книжка "Пучки на многообразиях", в которой очень много пучков и совершенно не понятно, что, собственно, из них выводится

наверно, жюри премии таки разобрались
455 120766
>>756

>То, чем пользуется другие люди вокруг тебя.


писюнами
456 120767
Есть ли какие видео-лекции (предпочтительно, но если нет, можно и книги), где объясняется математика старшей школы (пределы, производные, начало анализа, векторы и т. д.), но при этом информация не просто наваливается фактами, а детально объясняется, как и каким образом что-либо получается, каким образом проистекает из более базовых вещей? Доказывать самому с параллельной работой и другой учёбой сил у меня нет ещё я глупенький, а зубрёжка сильно убивает интерес. Заранее благодарю.
457 120768
>>767
материалов существует огромное множество, но есть один момент, который новички, кажется, не совсем понимают: источника, через который в голову всё идеально зайдёт и сразу же образуется чудесная ясность, нет и в принципе быть не может. потому что ты должен сам работать над тем, чтобы понимание вырастало.

поэтому пробуй разные источники и ищи то, что тебе нравится

если ты хочешь поиметь действительно глубокое понимание, то материалов "школьного уровня" (что бы это ни значило), наверное, не хватит: надо изучать вещественный анализ и линейную алгебру по-настоящему
16065956770262.gif2,4 Мб, 1920x1080
458 120769
>>767

>книги


Джон Берд: Инженерная математика. Карманный справочник
All the Math You Missed You Need for Graduate School. Thomas Garrity.
https://www.youtube.com/watch?v=hWEopMAgiis
Образовательная манга.
Тригонометрия на ютубе смотри трушина всего.
https://www.youtube.com/watch?v=Z5PrN6xen1g

>видео-лекции


На рутрекере и nonameclub посмотри. Там для для школьников куча курсов.
460 120774
>>767

>каким образом проистекает из более базовых вещей?


Такого нет. Многие определения произрастали из каких-то других вещей, но потом оказывалось, что можно было бы придумать их иначе, проще. Так же многие определения вызревали веками. Матанализ начался с Непера примерно, но определение непрерывной функции, казалось бы базовое понятие для анализа, дал Вейерштрасс и Коши.
Взять те же векторы. Их легко сейчас объяснить школьнику, сравнив с шагами на плоскости. Но появились они из работ Гамильтона над квартернионами.
461 120776
>>774

>Взять те же векторы. Их легко сейчас объяснить школьнику, сравнив с шагами на плоскости. Но появились они из работ Гамильтона над квартернионами.


Это не так. Название пришло из чисто мнимой части кватернионов, да - и их алгебра потом популяризована Хэвисайдом и Гиббсом. Но использовали вектора (не называя из векторами) уже раньше, в частности практически все, кто работал над геометрической интерпретацией комплексных чисел ещё до Гамильтона (Вессель, Буэ, Арган, Гаусс, и т.д.).

>но определение непрерывной функции, казалось бы базовое понятие для анализа, дал Вейерштрасс и Коши.


Тоже мимо, как минимум Больцано уже определял непрерывную функцию, когда доказывал теорему о промежуточном значении.

>>768
Вот тут всё верно.
Tif51DYDpuk.jpg129 Кб, 720x720
462 120777
Ваш любимый автор?
463 120779
>>777

>Ваш любимый автор?


Неиронично Арнольд.
464 120780
>>779
Почему?
465 120781
>>776

>Но использовали вектора


Ну тогда можно сказать, что вектора использовали всегда, или что их Валлис придумал.

>Больцано уже определял непрерывную функцию, когда доказывал теорему о промежуточном значении


Они жили примерно в одно и тоже время. Между Непером и Больцано были: Котс, Бернули, Лейбниц, Ньютон, Эйлер и пара веков времени.
466 120782
>>29047 (OP)
Любовный треугольник это когда М-Ж-М-М, правильно же?
467 120783
>>29047 (OP)
Здравствуйте, аноны!

Скажите, пожалуйста, прорешивание листков НМУ, например, или программы Вербицкого и Каледина "Тривиум" (или "Матшкольник") подразумевает, что анон должен сесть и решить их, ничего не читая? Вот прямо сел и решил?

Или подразумевается, что можно (или даже нужно) читать книги, искать там что-то похожее, и таким образом в итоге решить задачи?

Короче, скажите, пожалуйста, как вообще нормальные студенты НМУ или Матфака листки решают?
468 120784
>>783
можно читать книги и что угодно

>как вообще нормальные студенты НМУ или Матфака листки решают?


сообща
469 120785
>>781

>Ну тогда можно сказать, что вектора использовали всегда, или что их Валлис придумал.


Ну или так, или то, что их "ввели" Гиббс и Хевисайд. Какую интерпретацию не выберешь, Гамильтона упоминать смысла нет, как это ты сделал.

>Они жили примерно в одно и тоже время


Так это ты зачем-то упомянул Вейерштрасса и Коши. И Больцано как минимум лет на 20 раньше опубликовал свою теорему, если не ещё раньше, не помню.
470 120786
Правда ли, что математика не сложная, а скучная?

Вот, например, обычный математик либо занят какими-то абстрактными штуками, которых не существует в природе, либо преподает олимпиадную/вузовскую программу из года в год. Есть еще те, кто решил свои математические способности применить в прикладной сфере - стать квантовым брокером на бирже или писать фронтенд-приложения на блокчейне - но тут таких не уважают, как я понял.

В чем кайф математики?
471 120787
>>786

>Правда ли, что математика не сложная, а скучная?


Нет, неправда.

>В чем кайф математики?


А в чём вообще кайф чего-либо? Как можно объяснить это человеку, который этого не понимает?
472 120788
>>786
Сложность хотя это вообще не сложность математики в том, что тебе нужно прорешать либо запомнить решение тысяч задач и только тогда у тебя будет достаточная выборка для решения той или иной математической задачки или абстрактного понимания математической модели. Это несложно, учитывая то, что они все взаимосвязаны и чем выше твой айкью, тем легче будет узнавать паттерны. Воспринимай это как нейросеть.
473 120789
>>29047 (OP)
Го штурвал крутанем!
474 120791
>>786

>Правда ли, что математика не сложная, а скучная?


неправда

>В чем кайф математики?


в занятии определёнными абстрактными штуками, которых не существует в природе
475 120792
>>786

>Правда ли, что математика не сложная, а скучная?


Да, это так.
476 120793
>>791

>в занятии определёнными абстрактными штуками, которых не существует в природе


Это называются сказки, только без драконов и без ебли принцесс.
477 120794
>>793
тебя никто не спрашивал, как что называется, таракан
478 120795
>>794
пошел на хуй, петух
479 120796
>>793

>Это называются сказки, только без драконов и без ебли принцесс.


Похоже на коммунизм.
480 120797
>>796

>Похоже на коммунизм


Да, да, от планов ГОЭЛРО охуел сам сказочник Г. Уэллс, потом он еще раз охуел когда Ленин все это реализовал.
image.png1,3 Мб, 1300x950
481 120798
Это возможно более задача по физике, но физика с матешей идут рядом, поэтому может аноны разберутся. НЕЙРОНКА НЕ СМОГЛА.

Итак задача.
__
Лучшие прыгуны на Земле преодолевают высоту 2 м и больше. Как высоко они прыгали бы на Луне, где ускорение свободного падения в шесть раз меньше?
Важен не столько числовой ответ, сколько процесс решения.
__

Ответ нихуя не 12. Почему так?
482 120799
>>797

>когда Ленин все это реализовал


Ага, я ещё помню как он лампочку изобрёл.
483 120800
>>799

>Ага, я ещё помню как он лампочку изобрёл.


Нет, ее изобрел Лодыгин
484 120801
>>798

>Ответ нихуя не 12. Почему так?


>На Луне спортсмен прыгнет не в 6, а в 46 раз выше, чем на Земле.


Погугли же, там всякое разное еще учитывается
485 120802
>>800
Бредни антикоммуниста. Если лампочку изобрёл не Ленин, тогда почему во всём мире она называется "лампочка Ильича"?
486 120803
>>802
Потому, что Ленин дал ее народу.
487 120804
>>803
А теперь подумай, антикоммунист = русофоб, как Ленин мог дать её народу, если он её не изобрёл? Откуда он взял тогда её? Украл? Чё ещё неполживого скажешь?
488 120805
>>804
А не пойдешь ли ты на хуй, зануда буржуйская
490 120807
>>785
Так ты перечитай, почему я их упомянул, а не просто тригерись на слова, кто первый что-то придумал. Суть не в этом была. А что анализ спокойно 2 века существовал без фундаментально важного определения, которое сегодня на первых страницах учебника анализа дают. Как и, например, определение $\mathbb{R}$
90-let-nedeli.jpg1,3 Мб, 1204x1904
491 120808
>>29047 (OP)
Вешаем на стеночку
492 120809
>>807
Я прочитал же. Всё равно ты мимо.

А так по сути-то ты прав. Современные определения нередко запутывают. Но у кого есть время читать историю?
493 120811
>>805
Как же ты слаб в диалектике.
494 120812
>>811

>диалектике


>занудство


И еще раз тьфу на тебя
495 120813
>>811
Диалектики не существует.

Диалектика — это псевдонаучный философский марксистский бред.
Бред этот нужен только для того, чтобы коммунячий пропагандист смог "доказать" любой нужный ему наперёд заданный результат.
496 120814
>>813

>Диалектики не существует.


>Диалектика — это псевдонаучный философский марксистский бред.


Из этого следует, что псевдонаучного философского марксистского бреда не существует. Так как множество бреда включает в себя в качестве подмножества множество псевдонаучных тезисов, значит любой существующий тезис, являющийся философским и марксистским не может быть псевдонаучным, но может быть бредом. Заметим, что любое утверждение на научную тему является либо научным, либо псевдонаучным, следовательно бредовым. И наконец, следует, что любое философское и марксистское утверждение на научную тему не является ни псевдонаучным, ни бредом. Имплицитно ты заявил, что все существующие марксистские философские утверждения на научную тему являются научными. Интересное мнение.
497 120815
>>814

>Из этого следует, что псевдонаучного философского марксистского бреда не существует.


Тише, плесень марксистская.

Диалектически здесь доказано, что диалектика — псевдонаучный философский марксистский пропагандистский бред.
498 120816
>>815

>не смог прочитать всю ветку


>не смог выкупить троллинг


>не смог в формальную логику


Грустно.
499 120817
>>786
Думаю разных людей разное цепляет. Меня тем что точными словами описывает казалось бы трудно-описываемые образы, картинки. Тоже определние окружности например. Точно, без иных трактовок, передать картинку словами, это же магия какая-то.
500 120823
Математика - опасная вещь... Савватеев как-то рассказывал, что вся криптоистерия - результат неосторожного открытия какого-то малоизвестного математика.
501 120824
>>823

>что вся криптоистерия - результат неосторожного открытия какого-то малоизвестного математика


А тюльпанная лихорадка результат открытия чего?
Обновить тред
« /math/В начало тредаВеб-версияНастройки
/a//b//mu//s//vg/Все доски

Скачать тред только с превьюс превью и прикрепленными файлами

Второй вариант может долго скачиваться. Файлы будут только в живых или недавно утонувших тредах.Подробнее