Двач.hk не отвечает.
Вы видите копию треда, сохраненную 13 сентября в 03:26.

Скачать тред: только с превью, с превью и прикрепленными файлами.
Второй вариант может долго скачиваться. Файлы будут только в живых или недавно утонувших тредах. Подробнее

Если вам полезен архив М.Двача, пожертвуйте на оплату сервера.
image.png183 Кб, 610x451
Алгоритмов тред 75489 В конец треда | Веб
ITT, мы будем алгоритмизировать алгоритмизацию алгоритмизациоанальную. Алгоритмизацианалично, и алгоритмизациоаналистично.
Приготовь свой алгоритмизациоанал, для аналлизирования различных алго, невъебенных.

Заебатой автоматизированной алгоритмизации-нить, иди.
2 75490
>>75489 (OP)
Что делает эта хуета?
https://github.com/indutny/miller-rabin/blob/master/lib/mr.js#L73
Как вернуть делитель, при помощи алгоритма Миллера-Рабина, ёпт?
Кто-нибудь может расписать агоритм, а то чё-то нихуя не пашет.
sage 3 75494
>>75489 (OP)
В /pr/.
4 75496
>>75494
A number of computer scientists have argued for the distinction of three separate paradigms in computer science. Peter Wegner argued that those paradigms are science, technology, and mathematics. Peter Denning's working group argued that they are theory, abstraction (modeling), and design. Amnon H. Eden described them as the "rationalist paradigm" (which treats computer science as a branch of mathematics, which is prevalent in theoretical computer science, and mainly employs deductive reasoning).
5 75498
>>75494
Пусть будет, всё равно они никуда отсюда не денутся, так хоть в своём треде пусть прогают, а не по всей доске.
6 75503
>>75490
Там редукция монтгомери, она есть в bn
7 75511
>>75503
Какая разница между редукцией и индукцией?
8 75524
>>75511
Разница лишь в запуске их той или иной функцией. А дальше - в код смотри, заебал.
9 75526
>>75498
Это тараканы
Они сейчас всю доску заполнят вдвое пуще прежнего
10 75552
>>75526
Тарканы бегут из токсичного програмача сюда
11 75556
>>75552

>Тарканы бегут из токсичного програмача сюда


а матх-то здесь причём
12 75566
А бывают бесконечные и трансфинитные алгоритмы?
13 75568
>>75566
while (true) n = n+1

подходит?
14 75574
>>75526

>Это тараканы


Заткни ебало своё, прыщавое, и чтобы о "тараканах", я больше не слышал ни здесь, ITT, ни на доске, ни на двоще.

Чтобы ты знал, не так давно, нашли в Париже - Фелисьена Кабугу, который там финансировал https://ru.wikipedia.org/wiki/Свободное_радио_и_телевидение_тысячи_холмов
Там людей тоже тараканами решили поназывать, и дальше уже глянь что получилось там.

Мы программеры, а не тораканы.
А будете, сука, выёбываться,
запрограммируем на вас программизацию программизацию программизациоаналистичную, похлеще вашей математизации математизацианаличной.

>>75552

>Тарканы бегут из токсичного програмача сюда


Тарканы чуть пижже звучит, нежели "тараканы". Аххах.

>а матх-то здесь причём


Да ты заебал. Очевидно, же, что тред о математических алгоритмах. Иди спроси в программаче, как найти делитель алгоритмом Миллера Рабина, или блядь, как посчитать функцию Эйлера, чтобы найти количество первообразных корней по простому модулю.
Тебя там нахуй пошлют, и пойдут дрочить свои фронтендики и бекендики, под пледиком, с кофейком, в тёплом и уютном офисе.

Там нет математиков, и именно математика с её математической логикой, на уровне инструкций - алгоритмизирует автоматизацию информатизианалистичную.
15 75576
>>75574

>и чтобы о "тараканах", я больше не слышал ни здесь


ой, всё нахуй иди

>Мы программеры, а не тораканы.


go to /pr finally

>о математических алгоритмах


бред
16 75578
>>75576

>ой, всё нахуй иди


Ну ок. А дорогу нахуй покажешь, или сегодня ты пошёл в хуйц?

>go to /pr finally


Ты тупой мочерок, не?

>о математических алгоритмах


>бред


маняматических - фикс.
17 75583
В чем математический смысл алгоритмов?
18 75586
>>75583
В разложении отображения в композицию отображений, обладающую рядом специальных свойств.
19 75589
>>75583
Ну по сути игра с двумя основными законами алгебры, коммутативностью и ассоциативностью плюс индукция. Хорошо ориентируясь в этой базе, по сути средней школы можно стать очень хорошим программистом.
20 75593
коммутативен ли свап?
а = 1
b = 2

swap(a, b) то же самое что swap(b, a)?
21 75618
>>75593

>swap([1, 2]) -> [2, 1]


>swap([2, 1]) -> [1, 2]


>[2, 1] !== [1, 2]


>swap([1, 2]) !== swap([2, 1])

22 75619
>>75586
Ого. А ведь правда, глубокий взгляд на программирование.
23 75620
>>75619
Если позаниматься программированием, станет довольно очевидно, что точка с запятой, разделяющая команды, - это просто оператор композиции. И появляется большое желание перегрузить этот оператор. Отсюда вылезает хаскель.
24 75622
>>75586
>>75619
>>75620

Ага, а классы в ООП это категории
Бред и дерьмо
25 75623
>>75622
Это же объекты категорий? А в какой категории полиморфизм это морфизм?
26 75624
>>75623
а полиморфизм это функтор
27 75625
>>75622
Любое множество можно рассматривать как дискретную категорию. Но ты же не это имел в виду, да?
28 75626
>>75625
так там же нет множеств
там есть классы и методы б-же, как тошно-то
29 75627
Как так получилось, что все эти абстрактные вычислительные машины оказались эквивалентны друг другу. Почему нет машин, у которых множество вычислимых функций не совпадает с машиной тьюринга и не яаляется подмножетвом?
30 75628
Нет, робяты, тред не про хаскель, а про алгоритмы
31 75629
>>75618
что мы имеем ввиду под коммутативностью? Результат операции.
В результате
----
а = 1
b = 2

swap(a, b)
a = 2
b = 1

----
а = 1
b = 2

swap(b, a)
a = 2
b = 1

--
a = 2
b = 1
==
a = 2
b = 1
32 75631
>>75628
Это теперь тред про программирования и CS вообще.
33 75633
>>75631
$ \text{программирование} \in \text{CS} $
34 75638
>>75633
$ \text{программирование} \cap \text{CS} $
35 75645
>>75593
Если не важен порядок, то да.
36 75646
>>75629
Результат операции swap([], []) - это void.
Поскольку ни один void не должен быть равен другому, swap не коммутативна.
37 75647
>>75627
Тьюринг-полнота вообще необязательна и даже вредна.
38 75649
>>75647
Чем вредна.
39 75650
>>75627
Аксиома такая. Называется Тезис Церкви.
40 75656
>>75650
Только это не аксиома, а (внематематический) тезис, звучащий как "определение вычислимой функции адекватное".
41 75667
>>75629
Лолблядь.

Ты меняешь местами только значения параметров?
Или же ты меняешь местами и сами параметры,
вместе со сменой их значений?

Если второе, то то так, по твоей логике,
можно любую некоммутативную операцию сделать "коммутативной":
То же возведение в степень, например...
Смотри:
2^4 = 4^2 = 16, но 2^5=32 != 5^2=25 - некоммутативная операция.
Пусть: pow(a, b) = a^b;
----
a = 2;
b = 5;
pow(a, b) = 2^5
----
Меняем местами значения переменных:
a = 5;
b = 2;
Теперь, внимание - меняем местами сами переменные:
pow(b, a) = 2^5
----
Вывод: pow(a, b) = pow(b, a) - возведение в степень коммутативно. Ололо.
42 75668
>>75667
Зачем ты поменял местами значения переменных, он то этого не делал.
43 75669
>>75667
Можно проще
#define a b
#define b a
44 75671
>>75668
Ах да, мне померещилось чёт, что он поменял и значения,
в этом вот месте:

>а = 1


>b = 2



>a = 2


>b = 1


но он просто поменял местами значения в результате:

>swap([a, b]) = [b, a]


>swap([b, a]) = [a, b] -> и тут вот поменял на [b, a] = swap([a, b])


То есть, попросту, сделал:

>swap(swap([b, a]))

45 75672
>>75671
У него наверно аргументы по ссылке передаются, а сама функция swap ничего не возвращает.
46 75677
>>75638
$ \text{программирование} \subset \text{CS} $
commutative-swap.png15 Кб, 832x431
47 75678
>>75672
>>75618

swap ничего не возвращает, т.е. не является отображением, но порядок аргументов не важен.
48 75679
>>75678
Т.е. swap это преобразование:
$ swap = {\left({AB} \atop {BA} \right)} $
A переходит в B, B переходит в А.
49 75692
>>75627

> Как так получилось, что все эти абстрактные вычислительные машины оказались эквивалентны друг другу.


Потому что описывают одно и то же. Вот только в этой области нет своего Скиннера, который от частной топографии поведения перешёл бы к общему понятию операнта. Средства у нас есть, у нас мозгов нету. Так и живём.

> Почему нет машин, у которых множество вычислимых функций не совпадает с машиной тьюринга и не яаляется подмножетвом?


Потому что вычисление это одно явление, как ты его ни описывай, в итоге получится одно и то же разными словами.
50 75693
>>75692

>Потому что описывают одно и то же. Вот только в этой области нет своего Скиннера, который от частной топографии поведения перешёл бы к общему понятию операнта. Средства у нас есть, у нас мозгов нету. Так и живём.


что?
51 75702
>>75693
Все эти идеи так и остались на уровне тезиса Тьюринга-Черча из 1940 года.
52 75727
>>75702
Придумали же альтернативные аксиоматики геометрии, почему нельзя придумать альтернативного, неэквивалентного тому что есть, определение вычисления?
53 75728
>>75702
Какие "эти идеи" определение натуральных чисел вычислимых функций?
54 75729
>>75727
С оракулами есть, вопрос нахуя они нужны.
55 75759
Говорят, хаскель программисты думают, что знают теорию категорий. Почему думают, тамошние категории - не категории?
image.png130 Кб, 693x531
56 75763
Так лемма Йонеды это из прогерства?
57 75785
>>75763
нет
58 75786
>>75785
Из CS?
59 75793
>>75759
>>75785

> Ваши котягории не котягории, это ДРУГОЕ, стрелочка не поворачивается

60 75796
>>75759
1) Нет, тамошнЯЯ категорИЯ - не категория.
2) Используются самые-самые базовые понятия. Это как говорить, что ты используешь теорию множеств в решении своей задачи, если тебе нужно найти пересечение или булеан.
3) Теоркат возник естественным образом для обобщения совершенно конкретных идей из алгема и алгтопа, которые 3.1) не имеют аналогов в CS; 3.2) не могут быть поняты типичным программистом просто из-за колоссального порога вхождения (если они потратят пару лет на чистую математику, то может и поймут, но никто так не делает).
61 75797
>>75796

>Используются самые-самые базовые понятия. Это как говорить, что ты используешь теорию множеств в решении своей задачи, если тебе нужно найти пересечение или булеан.


Так в алгеоме и алгтопе тоже используются самые базовые понятия из теорката.
62 75800
>>75796

> . Это как говорить, что ты используешь теорию множеств в решении своей задачи, если тебе нужно найти пересечение или булеан.


А это и есть использование теории множеств. По прямому назначению. Ты себя читаешь вообще?
63 75802
>>75797

>Так в алгеоме и алгтопе тоже используются самые базовые понятия из теорката.


Открой учебник по теоркату для хаскеля и нормальный курс алгема-алгтопа. Те же производящие функторы - это одно из основных понятий современного теорката, они и в помине в CS не используются.

>>75800
Имел в виду аксиоматическую, конечно же. Хотя даже для наивной "подсчёт булеана есть применение теории множеств в программировании" это совершенная поебота.
64 75805
>>75802

>Те же производящие функторы - это одно из основных понятий современного теорката


Нет, это из гомологической алгебры. Тогда из функциональные алгоритмы из Хаскеля, использующую категории это тоже понятия современного теорката.
65 75807
>>75802

> производящие функторы


https://stackoverflow.com/questions/20336987/what-exactly-does-deriving-functor-do
Так ведь есть же!
66 75810
>>75802
>>75805
>>75807
Из гомологической алгебры производные — derivED, в хаскеле производящие — derivING.
67 75811
http://ci-plus-plus-snachala.ru/?p=10
Итак, делаем некоторые выводы:
Функторы — это в С++ прежде всего классы с перегруженной операцией (), а потом любые объекты, которые умеют вести себя как функции: это указатели на функции, лямбда-функции и имена функций, но сами функции и ссылки на функции функторами не являются, потому что они в терминах С++ не объекты.
Функторы полезны там, где функции должны вести себя как объекты.
Функторы имеют очень важное значение при использовании стандартной библиотеки шаблонов (STL), а следовательно могут так же широко использоваться в других библиотеках.
В стандартной библиотеке шаблонов (STL) есть некоторое множество предопределённых функторов, и их нужно использовать в предпочтение своим самописным.
Функторы имеют свойсто быть пересылаемыми и присваиваемыми, поскольку они объекты; обычные функции таким свойством не обладают.
Функции, возвращающие булевы значения, называются предикатами. Функторы могут быть и очень часто являются предикатами.
68 75814
>>75811
Есть языки, в которых функции это объекты первого класса. Но всё это не о том, это не алгоритмы. Да мейби предикаты только участвуют в алгоритмах но это опять же не первостепенно.
69 75815
>>75811
Омерзительно
70 75837
Как хорошо, что такой отстойник создали для таракашек, в других тредах теперь чистенько.
71 75839
>>75814

>Но всё это не о том, это не алгоритмы


Тред в целом про прогерство, CS и тому подобное.
72 75841
>>75503
А можно как-то в виде блок-схемы представить что там творится?
73 75846
>>75837
наверно, да
когда нет возможности сопротивляться, надо суметь расслабиться и получать удовольствие..
74 75898
>>75837
Жалко только конечно что все следующие математические открытия из CS и теории графов придут
75 75907
>>75898
из госдумы они придут
а на западе - из gender studies
76 75915
>>75898

> математические открытия


> CS


Выбери что-то одно
sage 77 75918
>>75898
Толстовато даже для матача.
78 75973
>>75918
Теория категорий раздел теории графов.
79 75987
>>75973
Теорияя графов раздел теории бинарных отношений.
80 75990
>>75987
бинарные отношения раздел интегралов под водовку
categorytheory.jpg118 Кб, 1224x756
81 76074
>>75973
Теория категорий на переднем крае SJW-наук.
82 76175
https://www.linux.org.ru/forum/talks/9840989

Какой путь необходимо проделать к теории категорий?
математика

13

6
Привет, ЛОР!
Предположим, понравился мне Haskell. Предположим, более-менее я его понял. Начинал я его учить с надеждой, что пойму математику. Ан нет, язык как язык, просто подход необычный.
Поспрашивав людей, я получил ответ, что просто так теорию категорий не выучить. Кто-то сказал, что нужно знать топологию. Кто-то упомянул другие области. А что скажете вы?
Исходные данные: студент второго курса какого-то шаражного вуза, непонятно как ещё не вылетевший. Практически полностью не понимаю матан, чуть лучше дела обстоят с линейной алгеброй и дискреткой, хотя тоже весьма плохо. Да, я тупой. Или ленивый. Или всё сразу. Но хочется исправиться.
Цель: понять теорию категорий и, желательно, применение оной. Ещё желательно было бы изучить как можно больше сфер математики, но это так, мечты.
Что скажете? Какую шикарную литературу по математике вы в своей жизни встречали? Нет ли какой-то волшебной книги по математике, которая охватывала бы все сферы?
83 76178
>>76175
долби азы.. abc = cba, a(bc) = (ab)c, почему -(-a) = a итд
84 76213
Аноны, вот есть программисты-анальники. Существуют ли математики-анальники? Анон, что носится по доске с дихлофосом и обзывает тараканами он математик-анальник? А Саватеев анальник? А Вебрит? Тут про дилдак можно было бы пошутить.
85 76218
>>76213

>Существуют ли математики-анальники?



нет
среднестатистические тян не добираются до математиков, потому и тезисная психология приматов на них не распространяется. не потому, что она совсем в их случае не верная, а потому что репрезентативная выборка слишком мала (в отличии от тараканов), невозможно разделять её элементы по слишком обобщённым и примитивным критериям

но ты можешь думать, что все вокруг -- одни "анальники", если тебе так нравится. вряд ли обидишь кого-нибудь
86 76222
>>76218

>среднестатистические тян не добираются до математиков, потому и тезисная психология приматов на них не распространяется.


Так про анальников не тян, а Фрейд придумал. И тянка тоже может анальницей. Это не что-то привязанное именно к прогерам.
87 76253
>>76222
В системно-векторной психологии кроме анального, есть еще уретральный, кожный, мышечный, зрительный, обонятельный, слуховой и оральный типы.
88 76263
>>76253
Ему то откуда знать, его фрик-псхологинь_ка рассказала ему только про анальников.
image.png237 Кб, 475x394
89 76272
>>76253

>В системно-векторной психологии кроме анального, есть еще уретральный, кожный, мышечный, зрительный, обонятельный, слуховой и оральный типы.

90 76279
>>76222
"программисты-анальники" это был такой не сильно громкий мем, порождённый какой-то блогеркой-психиатриней, которая любит затирать про аналы и подобное

не помню, как её зовут, но помню то видео про "программистов-анальники", из которого всё пошло

очевидно, запрашивающий анон аппелировал именно к нему, так что я отвечал, на него ориентируясь
91 76283
>>76279
Ну так та баба на Фрейда и ссылалась. Типа программисты анальники застряли на анальной стадии развития, когда детьми были или типа того. Не помню уже. Вот интересно, есть ли математики-анальники.
92 76287
>>76283
нет, все математики - сверхчеловеки

>Ну так та баба на Фрейда и ссылалась.


в её науке ссылаться больше не на кого
93 76299
У меня тян ссытся от этой бабы, так что тоже вынужден слушать эту хуйню. Как психолог она ноль, у неё три типа людей: истеричка, нарцисс и анальник. Еще куча желтухи и всякого треша про первертов. Берет она наглостью и харизмой, слушают ее в основном телки. Приехала в спб в детстве, не сошлась со сверстниками, в школе была изгоем, но не потерялась а выробатала смелость и ненависть к большинству людей.
94 76303
>>76287

>нет, все математики - сверхчеловеки


Математики - нарциссы?
95 76324
>>76253
По этой классификации математики являются звуковиками, я думаю.
96 76339
>>76303
обывателю трудно смириться с присутствием в его мире сверхчеловеков.
97 76344
>>76299
да похер на неё
видеоблоггер = говно по определению, по-моему

Harpreet Bedi, конечно, исключение, но и видеоблогером его назвать трудно, разве что чисто формально (выкладывал видео)
98 76345
>>76339
Мне кажется, ты анальник, пытающий косить под нарцисса.
99 76365
>>76345
я просто не знал, что нарцисс это другая часть той же классификации, и потому не понял правильно

я только про анальников слышал
100 77087
К счастью, многие из нас — специалисты по Computer Science, замаскированные под математиков (c) https://habr.com/ru/post/184716/
101 77089
>>77087
тараканы не палятся

но смешно: он с таким усердием и светимостью рассказывает, какую прекрасную они создали книгу, как будто кто-то будет её читать
102 77107
>>77089
Хотелось бы видеть больше книг по современной высшей математике, написанных в более доступной манере. Я уважаю сухой академический стиль, но всё же сложно переоценить простоту и красочность естественного языка при описании абстрактных понятий. Я не имею в виду научно-популярные труды вроде книг Брайана Грина, в которых вообще нет формул. Ведь мой опыт чтения книг по программированию показывает, что даже сложные практические концепции можно наглядно продемонстрировать и пояснить. Также с большим теплом вспоминаю книги вроде «Наглядная геометрия и топология» и издания «Кванта»…

Спасибо за ваш труд, постараюсь выделить время и полистать вашу книгу.
103 77116
>>77107
я однажды на ютубе нарвался на некого препода по математике (не профильного, в школе или даже для гуманитариев, не помню), которого все каким-то нездоровом образом массово восхваляют. фишка его заключалась в том, что он очень много кривляется. например, в том видео, где я его увидел, он начал занятие с того, как он смешно изображает, будто спускается по лестнице под парту. и всё в таком духе, а комментарии кричат: если бы меня так учили, я бы любила математику!!

в русском сегменте тоже есть что-то подобное, например, канал "математика без хуйни", на котором автор пересказывает (не в лучших его местах) http://www.mathprofi.ru/, вставляя через слово "блядь"

книги по программированию, написанные для хипстеров - они похожи на брошюры по личностному росту: в них повсюду переливается из пустого в порожнее, обсасывается до невозможности одна и та же мысль, наливается куча воды, у них названия вроде "думай как в джаве" или "философия джава" и они безумно любимы тараканами народом, непонятно за что

Я же считаю, читатель, которого надо развлекать вместо того, чтобы учить, - это неправильный читатель. И нехватка мотивации для читателя - это проблема читателя, а не автора. Я думаю, книга должна быть ясной, точной и короткой.

скажем, по этой причине я не люблю Алуффи, он удивительном образом пишет на высоком уровне и одновременно пытается развлекать читателя, будто тот младенец. Получается не очень
104 77127
>>77107
Самая большая наглядность достигается, если реализовать программу. Теоремы в общем-то бесполезны.
105 77140
>>77116

>скажем, по этой причине я не люблю Алуффи, он удивительном образом пишет на высоком уровне и одновременно пытается развлекать читателя, будто тот младенец


'Algebra Chapter 0' довольно сухая книга же. Где там развлечения?
aluffi.png31 Кб, 519x150
106 77142
>>77140
если кто-то считает, что так писать в научной литературе нормально, давайте больше про алуффи не говорить
107 77149
>>77142
пиздец ты сухарь, на пике ничего криминального. Культовые авторы аля Арнольд, Хатчер, Лэнг позволяют себе еще более лихие фамильярности.
108 77153
>>77149
Арнольд, Хатчер, Лэнг, наверно, нет, но другие иногда позволяют

дело, впрочем, не в одномоментной фамильярности (это ничего), а в том, что у алуффи весь текст более-менее такой (хотя этот пример, конечно, выбивается вперёд). мне трудно объяснить, это на уровне ощущений.

а Ленг мне нравится. строго и по делу
109 77154
>>77153

>Лэнг


Take any book on homological algebra, and prove all the theorems without looking at the proofs given in that book.
Homological algebra was invented by Eilenberg-MacLane. General category theory (i. e. the theory of arrow-theoretic results) is generally known as abstract nonsense (the terminology is due to Steenrod).
110 77155
>>77154
нашёл бы баян повеселее какой-нибудь
111 77161
>>77155
Зачем, если и этого хватит? Или вот эта хуйня про гомологическую алгебру - это "строго и по делу"?
112 77162
>>77161
у лэнга (в 3ьем издании алгебры) гомологической алгебре посвящено почти 100 страниц

именно их я не читал, но, думаю, там всё вполне строго и по делу
113 77165
>>77162

>в 3ьем издании алгебры


Это цитата из первых двух изданий. То есть в первых двух изданиях было не строго и по делу, а в третьем стало.
114 77166
>>77165
хорошо, если тебе настолько хочется доебаться, давай притворимся, что эти две строчки, обозначенные как "упражнение", уничтожают всё ленгом написанное, превращая это всё в фамильярность и несуразность, мне не жалко, честно
115 77169
>>77166

>давай притворимся, что эти две строчки


Давай притворимся, что единственное «шуточное» (но корректное, тем более учитывая, что позже Алуффи конкретней поясняет, что он имеет в виду) определение группы через группоид уничтожает учебник по алгебре на 700 страниц, превращая это всё в фамильярность и несуразность, мне не жалко, честно.
116 77170
>>77166
>>77169
Ваши рассуждения больше опираются на эстетику, чем на какие-то объективные метрики. А объективно они оба хороши - и не просто хороши, а на две головы выше среднего. И оба, кстати, экспериментаторы в области стиля и общего тона изложения.

Их тексты не фамильярны, а дружелюбны. Им недостаточно выступить в роли рассказчика, они хотят установить эмоциональный контакт с читателем. И это большая редкость, на самом деле. Несмотря на то, что математика в целом является одной из самых творческих профессий, стилистика математических текстов по какой-то не очень понятной причине чрезвычайно скудна - сказывается то ли доминирование аутистических черт у авторов, то ли выраженный консерватизм сообщества.
117 77171
>>77170

>А объективно они оба хороши - и не просто хороши, а на две головы выше среднего.


Я к этому и вел как бы. Что одна хохма на несколько сотен страниц никак не портит книгу, ни в случае Лэнга, ни в случае Алуффи.
118 77172
>>77169
На какой странице у Алуффи определяется категория? А на какой функтор? И как именно в книге Алуффи используются сопряженные функторы?
119 77175
>>77169
как верно заметил >>77170, алуффи действительно, очевидно, пытается установить эмоциональный контакт с читателем, он, однако, делает это повсюду и лично для меня эти попытки выглядят очень несуразно и топорно. дело не только в этом примере, у него целиком весь текст такой. я выше в первых же своих постах всё обозначил, как я ощущаю, ты пытаешься доебаться до каких-то частностей, мне не совсем понятно, зачем

определение группы через группоид было бы нормальным, если бы оно было выделено в виде короткого замечания где-нибудь в конце в середине, ничего плохого в этой "шутке" нет, просто не надо с неё начинать главу и обильно размусоливать на целую страницу.

втянули меня в какойто бредовый спор непонятно о чём, зачем я отвечаю только
120 77176
>>77175

>как я ощущаю


Ну раз ты так ощущаешь.

>ты пытаешься доебаться до каких-то частностей


Могу еще доебаться до того, что по твоим словам «Хатчер не позволяет себе таких фамильярностей». Это при том, что его книжка по алгтопу - настолько «дружелюбная», насколько вообще возможно, сплошной handwaving и визуальные аргументы, а не «строго, коротко и по делу». Так что для последовательности мог бы хейтить и его тоже.

>зачем я отвечаю только


Не знаю, можешь не отвечать.
>>77172
На первые два вопроса можно ответить просто открыв индекс в конце, но ладно: категории на странице 19, функторы на 494. А третий вопрос слишком неконкретный чтобы я мог что-то внятное сказать, ну сопряженность функторов тензорного произведения и Hom он например рассматривает, не знаю, отвечает ли это на вопрос о «как именно».
121 77177
>>77176
Как именно - какие теоремы доказываются с использованием этого понятия (или определений, данных с помощью этого понятия).
122 77178
>>77176
>>77177
Вообще, я хочу сказать, что Алуффи просто вводит терминологию ради терминологии - иначе бы между определениями категории и функтора не было бы такого разрыва. Содержательных утверждений у него настолько мало, что вся эта терминология остаётся никак не использованной. Зачем было такой абстрактный огород городить, непонятно.
123 77179
>>77178

>Алуффи просто вводит терминологию ради терминологии -


Вот тоже так показалось. Что хорошего в 'традиционном' (по факту) подходе (то есть, рассказать кратенько про категории и функторы в курсе алгтопа) - это то, что ты сразу видишь, а нахуя это вообще нужно, потому что функториальность это просто заебенно. А ковыряться в определениях - так себе затея, уровня 'теоркат для cs' высеров (раз уж мы в погромистском трэнде).
124 77187
>>77170

>доминирование аутистических черт у авторов, то ли выраженный консерватизм сообщества


Все в месте.
125 77189
>>77187
...но никто не знает, в каком(с).
126 77191
>>77176

>«строго, коротко и по делу»


я не сказал это про Хатчера, про Хатчера я сказал, он не позволяет себе того что же, что Алуффи, который пытается установить контакт с читателем, прибегая для этого к сомнительным стилистическим приёмам. Хатчер просто пытается понятно объяснить (насколько ему самому кажется, что это понятно)

у меня чувство, ты вообще не читаешь, что я пишу, просто вырываешь из контекста частности и упорно доёбываешься
127 77210
бля я тут узнал вот что
x / y = 1 / 3
в этом выражении мы можем задать в правой части любое соотношение которое мы хотим получить от x / y и не важно какие там будут величины. Понимаю что выглядит это как хуйня но я чувствую что у этой идеи есть большой потенциал.
128 77221
>>77210
не совсем понятно, что ты имеешь в виду, но чувтсвуется, что ты на пороге великого открытия
129 77590
>>77210

>x / y = 1 / 3


>3x / y = 1


>3x = y


>y = 3x



>в этом выражении мы можем задать в правой части любое соотношение которое мы хотим получить от x / y и не важно какие там будут величины.


>x / y = 1 / 3


>x = 5


>y = 8


>5/8 != 1/3

130 77628
>>77590
я имею ввиду что x и y это переменные, тред то тараканий
131 77629
>>77221
>>77590
Просто удобно на глаз выставлять соотношение переменных, после которых выполняется какое то условие, например это может быть и неравенство.
132 77651
>>77628
>>77629

У тебя в твоём уравнении

>y = 3x


к которому сводится вся хуета, только x является одной лишь переменной, а y рассчитыается из неё.
133 77716
>>77651
а если x / y = 2 / 3 уже всё не так очевидно
Банальный пример про аспект фото, если ширина относится к высоте более чем как два к трём то делаем то-то
134 77724
>>77716
Похуй на неочевидность:

>x / y = 2 / 3


>x = 2 / 3 × y


>y = x / (2 / 3)


>y = x × (3 / 2)


Опять же, одна переменная. Так что матан не наебёшь этим.
135 79251
Кто-нибудь понимает рекурсивную функцию ханойских башен?
136 79259
137 79508
>>79251
в книге Ж.Арсака есть замечательный вставной фантастический рассказ про ханойские башни

https://zh.b-ok.cc/book/437192/460d68
138 79531
>>79508
Спасибо. Выглядит занимательно.
139 80066
Есть функция, похожая на дискретный рандом. Как получить похожую, только чтобы еще длина полосочек тоже была "рандомной" от 1 до 10, например. Мне в голову пришло только, что хорошо бы иметь фунцию, как со второго пика, которая дискретно возрастает, а длина полосок случайная. С помощью нее можно было бы получить то что требуется из первой функции и другие функции случайно растягивать. Для любого x она должна выдавать результат за константное время и память.
140 80082
Задача: найти кратчайший путь от вершины 0 до вершины 7 с помощью алгоритма Дейкстры.
Пик 1 - собственно, граф, пик 2 - таблица, построенная алгоритмом Дейкстры.
Как построить эту таблицу я понимаю. Как по ней получить путь?
141 80134
>>75589
Большинство очень хороших программистов даже слов таких не знают.
142 80135
>>75763

>пикрил


>Так лемма Йонеды это из прогерства


Как из пикрила следует это утверждение?
143 80137
>>80134
>>75589

>Большинство очень хороших программистов даже слов таких не знают.


Хотя, возможно, это не мешает им понимать эти концепции. Но я сомневаюсь, что они вообще о них задумываются.
изображение.png355 Кб, 720x720
144 80430
>>75489 (OP)
Встаю на колени перед /math/ анонами

Помогите с алгоритмом Калмана. Нужно снизить количество шума. Хочу онлайн обновлять (XYZ) координаты двигающейся точки. В условном пространстве [0:100] в каждом направлении.

Пытаюсь на Питоне реализовать, но что-то второй день не выходит. А теорию изучать СИЛ МОИХ БОЛЬШЕ НЕТ.
145 80453
>>75490
Это вероятностный тест числа на простоту. Тебя в википедии забанили?
https://ru.wikipedia.org/wiki/Тест_Миллера_—_Рабина
146 80501
>>80453
Так, а, как вернуть делитель, если он таки-найден вероятностно?
147 80502
>>80501
И как он вычисляется - нихуя не пойму.
Какой-то "bn.mont(n)", "bn(1).toRed(red)" , чё-то неведомое творится ваще. Есть блок-схема?
Ебать, я уже и не помню нахуй мне нужен был этот ебучий делитель.

>02/11/20 Пнд 04:29:04

148 80536
>>80501
Там не выполняется деление самого проверяемого числа, там некоторое сконструированное делится НА проверяемое. Ты вообще читал что в вики написано? Там алгоритм - две строки, епт.
image.png7 Кб, 652x55
149 80598
>>80536
Да блять, ты посмотри в код, что я закинул. Там же фиолетовым по темно-серому написано - getDivisor. А что оно дальше делает - хуй знает. Кракозябры какие-то делает, непонятные.
150 80599
>>80536
Я знаю, как работает тест миллера-рабина, на простоту. Но речь шла о более расширенной функции этого алго - о функции getDivisor, которая должна бы, походу, возвращать ещё и делитель. И она его, вроде как возвращает, только как - хуй знает. Блок-схему бы, читабельную.
151 80858
>>80430
Анон, тоже пишу фильтр Калмана, но на крестах. Как задаешь шум?
И какую модель движения используешь?
152 80913
пиздец, как же много можно сделать умножением, делением, сложением и вычитанием. За годы работы ещё ни разу не понадобилась использовать степени, корни и логарифмы, нахуя они вообще нужны в реальной жизни?
153 80914
>>80913
ты кассиром работаешь?
154 80915
155 80926
>>80913

>нахуя они вообще нужны в реальной жизни?


мы почем знаем? Здесь доска математиков
156 81025
>>80913

>в реальной жизни?


Не математика.
157 81382
Где можно почитать полное алгоритма Брона-Кербоша?
Везде невнятная копипаста с википедии и реализация на псевдоязыке.
158 81383
>>81382

> полное алгоритма


полное описание*
159 81401
>>80913
пиздец, как же много можно сделать штрихом Шеффера. За годы работы ещё ни разу не понадобилась использовать конъюнкции, дизъюнкции, и негации, нахуя они вообще нужны в реальной жизни?
160 81402
>>81401
Заебенил себе даже Стрелку Пирса, из Штрихов Шеффера.
161 81511
Пожалуй этот тред подойдёт. У меня возник вопрос по поводу ГПСЧ. Я помню с ВУЗа что они не могут создать по настоящему случайных чисел, с этим всё ясно. А вот в статье про ГПСЧ на вики также сказано:

>Любой ГПСЧ с ограниченными ресурсами рано или поздно зацикливается


Тут вроде тоже всё понятно, но я наткнулся на одну штуку, которая похоже нарушает это правило. Решил найти собственно формальное док-во этого утверждения, но чёт не выходит. Помогите найти формальное доказательство.

https://ru.wikipedia.org/wiki/Генератор_псевдослучайных_чисел#Детерминированные_ГПСЧ
162 81512
>>81511
там же буквально по твоей ссылке и написано формальное доказательство

Тараканы совсем поплыли, перед своим же носом не видят
163 81526
>>81512
Нет, ты был невнимателен, там нет дока-ва.
164 81529
Бьюсь над физическим движком столкновений, хочу его запихнуть на GPU. Пока дошёл до того что GPU охотно есть матрицы, и что если как нибудь сделать так что каждая ячейка отвечает за какую нибудь пару объектов, допустим ячейка (1, 0) отвечает за пару A, Б, соотвественно в ячейке (1, 0, 0) лежит координата объекта А в физическом мире, а в ячейке (1, 0, 1) координата объекта Б, чтобы GPU мог взять эти координаты и столкнуть, но ведь координаты сами состоят из трёх значений, а в ячейку можно положить только одно, как быть, туда ли я копаю?
165 81532
>>81529
В /pr/
166 81543
>>81532
там нет подходящего раздела, могу дополнить что с самого начала у меня есть пять объектов А, Б, В, Г, Д внутри каждого есть координаты и велосити где он находится в текущем фрейме и нужно вычислить координаты и направление в следующем фрейме. Поэтому я создаю матрицу где по горизонтали у меня А-Б-В-Г-Д и по вертикали А-Б-В-Г-Д, поэтому в 0,0 у нас столкновение А с А, что нам не нужно, а в 1-0 уже нужное столкновение А с Б. Есть ли способы отрезать треугольник от квадратной матрицы, так как получается что в нём будет дублирующиеся столкновения Б с А и т.д
167 81545
>>81543

>там нет подходящего раздела


создай
здесь тебе не рады
168 81547
>>81545
Я ему рад.
169 81548
>>81545
К тому же это тред алгоритмов. Странно здесь в /pr посылать.
170 81550
>>81547
>>81548
тараканов всех гнать надо
171 81559
>>81550
ну да согласен, чего-то я хуйни какой-то понаписал, прошу прощения.
172 81596
Всем Q.
Кто-то помнит как проделать упражнение из Городенцева, где нужно показать, что на последнем шаге алгоритма Евклида мы получим $НОК(a,b)$?

Ну, то есть мы все возникшие числа в алгоритме Евклида легко можем представить в виде $ax+by$ c целыми $x,y$. На предпоследнем шаге получаем представление $НОД(a,b)$ в таком виде, а на последнем можем и ноль представить точно так же:

$0 = ax+by$ И далее утверждается, что $|ax|=|by|=НОК(a,b)$.

Ковыряясь в коэффициентах в общем виде становится понятно, что на каждом шаге коэффициенты $x_i,y_i$ при $а,b$ взаимно просты. А значит и на последнем шаге коэффициенты $x,y$ тоже взаимно просты и тогда все доказано.

Проблема в том, что не вполне ясно как доказать взаимную простоту коэффициентов на каждом шаге, индукцией не получается, вот тут у чувака та же проблема, но ему банальщину затирает ответчик: https://math.stackexchange.com/questions/3784896/least-common-multiple-in-euclidean-algorithm
173 81601
>>81526

>Детерминированные_ГПСЧ


>Детерминированные


>Детерминированные, БЛЕАТЬ.


https://ru.wikipedia.org/wiki/Детерминизм
Короче, смотри. Если ГСПЧ имеет какое-либо состояние, то состояние ДО этого, является причиной этого состояния.
ДО, значит, чуть раньше во времени.
Любое состояние, ГСПЧ, какое не возьми, имеет состояние ДО этого, а значит любое значение на выходе ГСПЧ, имеет причину,
и ГСПЧ не может выдать истинно случайные числа.

И вообще, любое состояние, любого генератора, имеет состояние ДО этого, то есть, хотя-бы на одну единицу планковского времни предшествующее ему,
а значит ни один генератор не может выдать случайные числа.
Если конечно, эти состояния не появляются откуда-то извне времени, то есть спонтанно,
как появилась, вне времени, планковская эпоха, например, потому что ДО планковской эпохи,
не было другого планковского интервала времени, время появилось в планковскую эпоху.
Ну так вот, если время, на самом деле, комплексное, как говорил Стивен Хокинг,
здесь: https://ru.wikipedia.org/wiki/Мнимое_время#В_космологии
то возможно, из комплексного времени или из многомерия 11-ти мерной М-теории суперструнной,
может появиться нечто, что появляется спонтанно, то есть вне времени, и не имеет состояния ДО сгенерированного состояния.
Тогда, если спонтанные явления существуют, возможны ГСЧ, и как следствие индетерминизм ещё.
А так, во времени, движется всё, и всё имеет состояние ДО, а значит нихуя случайного быть не может в принципе.
Если взять ГСПЧ, то это просто, грубо говоря, кольца из значений, кольца, с большим периодом,
и если последовательно пробежать все элементы, когда-нибудь, ты упрёшься в самый первый элемент,
и при этом, последний элемент, будет являться причиной генерации этого вот первого элемента.
Как, например, при использовании этого ГСПЧ: https://ru.wikipedia.org/wiki/Линейный_конгруэнтный_метод
Но из-за пиздатости этих колец, у таких генераторов, как https://ru.wikipedia.org/wiki/Вихрь_Мерсенна брутить весь период ГСПЧ,
мягко-сказать, энергозатратно.
Однако, последний, не является криптостойким, а вот https://ru.wikipedia.org/wiki/ISAAC является.
И там тоже большой период зацикливания.
А ваще, юзай шумы. Ну, там, белый шум, тепловой шум, дробовой шум, джонсоновский шум, квантовые, фотонные, фононные ГСЧ,
всю эту хуйню, моделировать, врядли кто станет.
173 81601
>>81526

>Детерминированные_ГПСЧ


>Детерминированные


>Детерминированные, БЛЕАТЬ.


https://ru.wikipedia.org/wiki/Детерминизм
Короче, смотри. Если ГСПЧ имеет какое-либо состояние, то состояние ДО этого, является причиной этого состояния.
ДО, значит, чуть раньше во времени.
Любое состояние, ГСПЧ, какое не возьми, имеет состояние ДО этого, а значит любое значение на выходе ГСПЧ, имеет причину,
и ГСПЧ не может выдать истинно случайные числа.

И вообще, любое состояние, любого генератора, имеет состояние ДО этого, то есть, хотя-бы на одну единицу планковского времни предшествующее ему,
а значит ни один генератор не может выдать случайные числа.
Если конечно, эти состояния не появляются откуда-то извне времени, то есть спонтанно,
как появилась, вне времени, планковская эпоха, например, потому что ДО планковской эпохи,
не было другого планковского интервала времени, время появилось в планковскую эпоху.
Ну так вот, если время, на самом деле, комплексное, как говорил Стивен Хокинг,
здесь: https://ru.wikipedia.org/wiki/Мнимое_время#В_космологии
то возможно, из комплексного времени или из многомерия 11-ти мерной М-теории суперструнной,
может появиться нечто, что появляется спонтанно, то есть вне времени, и не имеет состояния ДО сгенерированного состояния.
Тогда, если спонтанные явления существуют, возможны ГСЧ, и как следствие индетерминизм ещё.
А так, во времени, движется всё, и всё имеет состояние ДО, а значит нихуя случайного быть не может в принципе.
Если взять ГСПЧ, то это просто, грубо говоря, кольца из значений, кольца, с большим периодом,
и если последовательно пробежать все элементы, когда-нибудь, ты упрёшься в самый первый элемент,
и при этом, последний элемент, будет являться причиной генерации этого вот первого элемента.
Как, например, при использовании этого ГСПЧ: https://ru.wikipedia.org/wiki/Линейный_конгруэнтный_метод
Но из-за пиздатости этих колец, у таких генераторов, как https://ru.wikipedia.org/wiki/Вихрь_Мерсенна брутить весь период ГСПЧ,
мягко-сказать, энергозатратно.
Однако, последний, не является криптостойким, а вот https://ru.wikipedia.org/wiki/ISAAC является.
И там тоже большой период зацикливания.
А ваще, юзай шумы. Ну, там, белый шум, тепловой шум, дробовой шум, джонсоновский шум, квантовые, фотонные, фононные ГСЧ,
всю эту хуйню, моделировать, врядли кто станет.
174 81652
>>81382
Бамп. Тут хоть объясните.
175 81843
>>81652
никто не знает
ищи сам
утомил

на ру.википедии есть две ссылки, кстати
на английской ссылок с десяток
176 81847
>>81601

>Если ГСПЧ имеет какое-либо состояние


Вот меня это если смущает, даже на вики сказано что только большинство ГПСЧ удовлтеворяют схеме с состоянием и т. д. Я наверно плохо выразился, зря начал с ГПСЧ, прост на эту тему я всегда в их контексте думал, т. к. в вузе так проходил. Правильнее спросить так: можно ли детерминированно получать последовательноть без периода ?(конечно же используя ограниченную память) В теории то понятное дело что можно, с бесконечной памятью.
177 81849
>>81847
Ну, смотри...
Возьмём, для примера, обычный счет двоичного представления натуральных чисел... Поехали:

0
1
10
11
100
101
110
111
1000
... и так далее...

Эта последовательность требует всё большей и большей памяти, а именно +1 бит на каждый новый разряд.
Если продолжать этот счет, бесконечно, то нужно будет бесконечное число разрядов, а значит и - бесконечная память.
Тем не менее, эта последовательность не имеет периода, то есть она вообще не зацикливается.

Но возьмём конечную память в 3 бита.
000 - 0
001 - 1
010
011
100
101
110
111
000 - 0
101 - 1
...
Очевидно зацикливание с периодом 2^3 = 8, каждые 8 значений, потому что 3 бита на три разряда.
И хотя, с ростом числа разрядов до N, период зацикливания простого счета, растёт по экспоненте до 2^N,
тем не менее, всё-же, при конечной памяти, этот цикл имеет конечное число значений, и счет зацикливается.

Но возьмём число разрядов N = 256. Число комбинаций 256-битных значений, равно 2^256 ,
и это ебически пиздатое число, и это период зацикливания генератора, основанного на последовательном счете.
Чтобы пробежать все значения всего этого цикла, можно спалить, нахуй,
всю энергию Вселенной, и так и не пробежать эти значения.

такой "генератор" не является криптостойким,
потому что чтобы из состояния x вычислить 3-е, или 7-е, и т. д., состояние,
не обязательно пробегать все 3, или 7, и т. д. значений,
можно просто прибавить число 3 или 7, и получить это значение.
А вот если это будет нечто вроде: (hash(x), hash(hash(x)), и т. д...) , тогда хуй.
Но хэши имеют коллизии, и их цепочки могут зацикливаться тоже, причём раньше чем зацикливается весь период.
Например, грубо-говоря, хэш какого-нибудь числа, может дать хэш2, его хэш даст хэш3, а хэш хэша3, даст снова число, хэш которого даст хэш2.
Это грубо-говоря, конечно там период побольше будет, но грубо-говоря, в этом примере, получишь генератор с циклом в 3 значения,
несмотря на то, что в записи хэша - дохуя бит. И ещё, из-за коллизий, какое-нибудь число2, может дать хэш2, с тем же результатом на выходе.

Короче, блядь, если у тебя память ограничена, ты не можешь записать в неё бесконечность, а значит будет конец,
и либо опять всё сначала, либо вообще ну конец прям. Всё станет и начнёт лагать, и забаговываться.
177 81849
>>81847
Ну, смотри...
Возьмём, для примера, обычный счет двоичного представления натуральных чисел... Поехали:

0
1
10
11
100
101
110
111
1000
... и так далее...

Эта последовательность требует всё большей и большей памяти, а именно +1 бит на каждый новый разряд.
Если продолжать этот счет, бесконечно, то нужно будет бесконечное число разрядов, а значит и - бесконечная память.
Тем не менее, эта последовательность не имеет периода, то есть она вообще не зацикливается.

Но возьмём конечную память в 3 бита.
000 - 0
001 - 1
010
011
100
101
110
111
000 - 0
101 - 1
...
Очевидно зацикливание с периодом 2^3 = 8, каждые 8 значений, потому что 3 бита на три разряда.
И хотя, с ростом числа разрядов до N, период зацикливания простого счета, растёт по экспоненте до 2^N,
тем не менее, всё-же, при конечной памяти, этот цикл имеет конечное число значений, и счет зацикливается.

Но возьмём число разрядов N = 256. Число комбинаций 256-битных значений, равно 2^256 ,
и это ебически пиздатое число, и это период зацикливания генератора, основанного на последовательном счете.
Чтобы пробежать все значения всего этого цикла, можно спалить, нахуй,
всю энергию Вселенной, и так и не пробежать эти значения.

такой "генератор" не является криптостойким,
потому что чтобы из состояния x вычислить 3-е, или 7-е, и т. д., состояние,
не обязательно пробегать все 3, или 7, и т. д. значений,
можно просто прибавить число 3 или 7, и получить это значение.
А вот если это будет нечто вроде: (hash(x), hash(hash(x)), и т. д...) , тогда хуй.
Но хэши имеют коллизии, и их цепочки могут зацикливаться тоже, причём раньше чем зацикливается весь период.
Например, грубо-говоря, хэш какого-нибудь числа, может дать хэш2, его хэш даст хэш3, а хэш хэша3, даст снова число, хэш которого даст хэш2.
Это грубо-говоря, конечно там период побольше будет, но грубо-говоря, в этом примере, получишь генератор с циклом в 3 значения,
несмотря на то, что в записи хэша - дохуя бит. И ещё, из-за коллизий, какое-нибудь число2, может дать хэш2, с тем же результатом на выходе.

Короче, блядь, если у тебя память ограничена, ты не можешь записать в неё бесконечность, а значит будет конец,
и либо опять всё сначала, либо вообще ну конец прям. Всё станет и начнёт лагать, и забаговываться.
178 81861
>>81849

>Короче, блядь, если у тебя память ограничена, ты не можешь записать в неё бесконечность


А я запишу потенциальную бесконечность, ведь актуальная это не математика.
179 81862
>>81861

>А я запишу потенциальную бесконечность, ведь актуальная это не математика.



Погуглил, нарыл это: https://ru.wikipedia.org/wiki/Бесконечность#Потенциальная_и_актуальная_бесконечность

>Бесконечность может рассматриваться как неограниченность некоторого процесса, например, когда


>во втором постулате Евклида утверждается возможность продолжить бесконечно и непрерывно любую прямую,


>то имеется в виду, что процесс можно непрерывно продолжать,


>но существование такого самостоятельного объекта, как бесконечная прямая, из него не следует.


Подумал-подумал, как можно продолжить прямую бесконечно, без существования бесконечной прямой как объекта,
и просто замкнул мысленно прямую в кольцо, искривив пространство каким-нибудь гравитационным искривлением.
Если прямая это кольцо, то ей моно продолжаь и продолать, и продолжать и продолжать,
но в итоге, одна точка может иметь одну и ту же координату на прямой этой, после нескольких проворотов по кольцу.
То есть, получаешь цикл из координат, и генератор координат - зацикливается.

>Такого рода процессы и совокупности объектов, их описывающие,


>характеризуют как потенциальную бесконечность


>(в схоластике используется термин «синкатегорематическая бесконечность»),


>потенциально бесконечное


>не подразумевает целостных бесконечных предметов и явлений,


>в каждой фазе бесконечного процесса рассматриваются лишь конечные сущности,


>то есть является


>лишь частичным отрицанием конечного.


То есть, как я понял, бесконечная прямая, рассматривается как бесконечное число конечных отрезков,
складываемых по мере необходимости продолжения прямой, а не уже сложенных в бесконечную прямую.
Но опять же, ключевое слово здесь - БЕСКОНЕЧНОЕ число отрезков, и если их больше чем (2^8-1),
при 8-ми битах в разрядах записи числа отрезков, то число трезков большее (2^8, например),
уже нельзя будет записать 8-мью битами, надо 9 бит,
и вот так вот, конечная память, просто не даст возможность представить в числовом виде - бесконечное число отрезков.
179 81862
>>81861

>А я запишу потенциальную бесконечность, ведь актуальная это не математика.



Погуглил, нарыл это: https://ru.wikipedia.org/wiki/Бесконечность#Потенциальная_и_актуальная_бесконечность

>Бесконечность может рассматриваться как неограниченность некоторого процесса, например, когда


>во втором постулате Евклида утверждается возможность продолжить бесконечно и непрерывно любую прямую,


>то имеется в виду, что процесс можно непрерывно продолжать,


>но существование такого самостоятельного объекта, как бесконечная прямая, из него не следует.


Подумал-подумал, как можно продолжить прямую бесконечно, без существования бесконечной прямой как объекта,
и просто замкнул мысленно прямую в кольцо, искривив пространство каким-нибудь гравитационным искривлением.
Если прямая это кольцо, то ей моно продолжаь и продолать, и продолжать и продолжать,
но в итоге, одна точка может иметь одну и ту же координату на прямой этой, после нескольких проворотов по кольцу.
То есть, получаешь цикл из координат, и генератор координат - зацикливается.

>Такого рода процессы и совокупности объектов, их описывающие,


>характеризуют как потенциальную бесконечность


>(в схоластике используется термин «синкатегорематическая бесконечность»),


>потенциально бесконечное


>не подразумевает целостных бесконечных предметов и явлений,


>в каждой фазе бесконечного процесса рассматриваются лишь конечные сущности,


>то есть является


>лишь частичным отрицанием конечного.


То есть, как я понял, бесконечная прямая, рассматривается как бесконечное число конечных отрезков,
складываемых по мере необходимости продолжения прямой, а не уже сложенных в бесконечную прямую.
Но опять же, ключевое слово здесь - БЕСКОНЕЧНОЕ число отрезков, и если их больше чем (2^8-1),
при 8-ми битах в разрядах записи числа отрезков, то число трезков большее (2^8, например),
уже нельзя будет записать 8-мью битами, надо 9 бит,
и вот так вот, конечная память, просто не даст возможность представить в числовом виде - бесконечное число отрезков.
180 81867
>>81849
Ну вот я дальше копаю, и наконец я уже понял как правильно классифицируется то что изначально принял за возможность бесконечного апериодичного генератора.
https://en.wikipedia.org/wiki/Low-discrepancy_sequence
Есть, оказывается, понятия квазирандом и квазипериодичная последовательность. Можно ли их получать используя конечную память я пока ещё не выяснил, но вот смотрите что гуглится:
https://www.sciencedirect.com/science/article/abs/pii/0167715286900994
Тут вроде читать бесплатно не даёт. Я также понимаю что, даже если окажется вдруг, что так можно делать, то скорее всего такой ГК(квази)СЧ окажется полным уг по своим свойствам, уж по криптографическим точно.
181 81868
>>81867
Получить квази RNG с бесконечным периодом - это задачка в две строчки для первокурсников
Дело-то не в периоде, выше уже писали, что даже периода в 256 хватает, чтобы никогда не повторяться в обозримом будущем
Дело-то в предсказуемости, и тут бесконечный период ничего особенно лучшего не гарантирует по сравнению с конечным
182 81874
>>81868

>Получить квази RNG с бесконечным периодом - это задачка в две строчки для первокурсников


Ну го, покажи эти две строчки нам.
183 81875
>>81874
В твоей статье эти две строчки
184 81896
>>81867

>Ну вот я дальше копаю,


>и наконец я уже понял


>как правильно классифицируется то


>что изначально принял за возможность


>бесконечного апериодичного генератора.



>Есть, оказывается, понятия квазирандом


>и квазипериодичная последовательность.



Блядь, я не могу читать этот инглиш, поэтому прогуглил сам, и нашёл вот это: http://math.nsc.ru/~serge/qpsl/problem_statement_1.htm

>Последовательность, имеющая квазипериодическую структуру,


>или квазипериодическая последовательность ―


>это последовательность с квазипериодической сменой своих свойств.



То есть, я так понял, ты просто хочешь сделать так, чтобы период зацикливания генератора был динамическим, и изменялся?
Ну, даже если так, всё-равно это не даст бесконечное число вариантов, при конечной памяти.

>Можно ли их получать используя конечную память я пока ещё не выяснил, но вот смотрите что гуглится


Квазипериодические последовательности, вроде можно.
Но конечной памяти, они всё-равно не будут иметь бесконечное число вариантов, и всё-равно будут зацикливаться.
Можно просто по прохождению цикла - смещения в цикле юзать, чтобы проворачивать этот цикл.
Наример, период зацикливания трехбитного генератора составляет 8 значений (включая 0 - от 0 до 7):
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2 значения повторяются
А можно сделать так:
0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 0, 2, 3, 4
то есть, по прохождению цикла в 8 элементов - плюс единичка,
и в целом, последовательность уже имеет разные периоды,
хотя некоторые из них меньшие, нежели 8, из-за того, что 2^3 = 8 значений в конечной памяти, объёмом в 3 бита.
184 81896
>>81867

>Ну вот я дальше копаю,


>и наконец я уже понял


>как правильно классифицируется то


>что изначально принял за возможность


>бесконечного апериодичного генератора.



>Есть, оказывается, понятия квазирандом


>и квазипериодичная последовательность.



Блядь, я не могу читать этот инглиш, поэтому прогуглил сам, и нашёл вот это: http://math.nsc.ru/~serge/qpsl/problem_statement_1.htm

>Последовательность, имеющая квазипериодическую структуру,


>или квазипериодическая последовательность ―


>это последовательность с квазипериодической сменой своих свойств.



То есть, я так понял, ты просто хочешь сделать так, чтобы период зацикливания генератора был динамическим, и изменялся?
Ну, даже если так, всё-равно это не даст бесконечное число вариантов, при конечной памяти.

>Можно ли их получать используя конечную память я пока ещё не выяснил, но вот смотрите что гуглится


Квазипериодические последовательности, вроде можно.
Но конечной памяти, они всё-равно не будут иметь бесконечное число вариантов, и всё-равно будут зацикливаться.
Можно просто по прохождению цикла - смещения в цикле юзать, чтобы проворачивать этот цикл.
Наример, период зацикливания трехбитного генератора составляет 8 значений (включая 0 - от 0 до 7):
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2 значения повторяются
А можно сделать так:
0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 0, 2, 3, 4
то есть, по прохождению цикла в 8 элементов - плюс единичка,
и в целом, последовательность уже имеет разные периоды,
хотя некоторые из них меньшие, нежели 8, из-за того, что 2^3 = 8 значений в конечной памяти, объёмом в 3 бита.
185 81897
>>81896
>>81867
>>81868
Я помню когда мне надо был рандом, думал сделать какой-то фрактальный квазипериодический ГСЧ,
как вот эта вращающаяся диковина: https://youtu.be/qhbuKbxJsk8?t=738
Но потом просто поставил камеру на Lava-лампу с блётсками, и снимал поток хэшей изображений с её матрицы.
https://www.youtube.com/watch?v=-lplhvnKYxU
186 81898
Бля, уёбывети в отдельный загон, это не алгоритмы
187 81899
>>81898
дихлофосом их, по-другому никак
188 82612
меж тем наткнулся на очень толковый курс для тараканов
https://www.youtube.com/watch?v=_fwJA2_hXt4
189 82613
>>82612
Как можно в 21 веке смотреть лекции, где пишут на доске? Это значит, что лектор вообще не уважает зрителей или даже не может сделать презентацию.
190 82614
>>82613
На этом примере видно на сколько лучше строят свои лекции люди имеющие дело с алгоритмами, нежели обычные математики типа Саватеева, которые двух слов связать не могут чтобы слушатель не запутался
191 82615
>>82612
Какие пререквизиты у курса?
192 82617
>>82614
Программирование уже затем изучать надобно, что оно ум в порядок приводит.
193 82620
>>82617
давно известно уже, что ни математека, ни программирование ум в порядок не приводят
194 82621
>>82620
Почему?
195 82624
>>82615
хороший тараканий скил, анализ на уровне ШП
196 82625
>>82617
не у всех
197 82626
>>82621
статистическое наблюдение
198 83824
>>75489 (OP)
Реквестирую алгоритм для авторизации клиента на сервере, алгоритм с доказательсвом с нулевым разглашением.
Чтобы клиент мог отправить пруф того, что он знает пароль, не отправляя сам пароль, и чтобы сервер мог проверить вероятностно знает ли юзер пароль или нет.

Судя по этой статье:
https://sites.google.com/site/anisimovkhv/learning/kripto/lecture/tema11#p115
из раздела:

>III. Упрощенная схема аутентификации Фейге-Фиата-Шамира.


число s должно обладать какими-либо особыми свойствами, и как его генерировать - не совсем понятно.

Мне же, нужен алго такой, где s может быть произвольным числом.
SLV 3.jpg22 Кб, 400x300
199 83825
>>83824

>алгоритм для авторизации клиента на сервере

200 83832
>>83825
Ну, блядь. Регистрация - делай так, так, так. Авторизация - делай так, так, так, так, блядь. Вход по кукам, куки есть? Так, нет - нахуй на перелогин. Восстановление доступа - секретный вопрос прохешировал, сравнил, дальше делай так, так пароль меня, так потом вот так блядь, и на перелогин. Так, так, потом так, и потом ещё эдак, и всё нахуй проверено и заебись. Алгоритм, короче.
DichlorvosStructuralFormulae.V.1.svg.png51 Кб, 1920x983
201 83833
202 83837
Unknown.png2 Кб, 291x173
203 83839
204 83845
>>83833
В жопу себе засунь свой баллон с дихлофосом, это тред про алгоритмы.
205 83859
>>83833
Как же ты его приложил.
206 83860
>>83833
Один ебанат с пынями-пучкистами спугнул почти всех мало-мальски имеющих отношение к математике, теперь форсер дихлофоса спугнет и айтишников. Проклятое место, реально.
207 83862
>>83860
пыни-пучкисты были прекрасны, не надо
не знаю даже, кого они спугнули, если тараканов, так то к лучшему
208 83896
>>83860

>теперь форсер дихлофоса спугнет и айтишников.


Здравствуй, какая тематика в /math/?! Этот тред вообще по-хоршему нужно было сразу снести

>Один ебанат с пынями-пучкистами спугнул почти всех мало-мальски имеющих отношение к математике


Те, кто "спугнулись" такой хуйнёй, нашли бы от чего спугнуться и в дальнейшем, это сосач всё-таки

Кстати, весьма интересные алгоритмы встречаются в топологическом дата сайенсе, с гамалогиями.
209 83899
>>83860
правильно он травит, аутентифиакция, и прочие крипты, блокчейны, бобы, алисы это не алгоритмы, литр дихлофоса им
210 83901
>>83899
Можно примеры кошерных алгоритмов?
211 83902
>>83901
Сортировка Пузырьком
212 83903
>>83901
вот у меня на повестке дня рекурсия, ханойские башни, но я пока не могу сформулировать мой вопрос
image.png226 Кб, 301x725
213 83959
>>75489 (OP)

>ITT, мы будем алгоритмизировать алгоритмизацию алгоритмизациоанальную. Алгоритмизацианалично, и алгоритмизациоаналистично.


>Приготовь свой алгоритмизациоанал, для аналлизирования различных алго, невъебенных.


>


>Заебатой автоматизированной алгоритмизации-нить, иди.

photo2021-06-2510-18-29.jpg79 Кб, 960x1280
214 84913
Анончане, помогите с тараканьей хуйнёй. Вот допустим у нас есть сетка 8x8, каждая ячейка пронумерована, в левом нижним углу находится 0 и дальше номера ячеек возрастают по мере движения влево вверх, см пикрил. Так же у нас есть вектор [4.5; 4.5]. Вопрос на какой номер ячейки он указывает, как посчитать-то подскажите позязяяяя
215 84917
>>84913
Картинка неверная, у тебя х=3.5
Для вектора $(x, y)$ номер ячейки $N$ равен $8 \cdot (\overline{y}-1) + \overline{x}$ где $\overline{a}$ это функция ceiling
216 84918
>>84917

>, у тебя х=3.5


т.е. y=3.5
217 84919
>>84917
делаю 8(3,5 - 1) + 4,5 = 24,5 а должно быть 29
218 84921
>>84919
Для [3.5, 4.5] формула даёт 8(4-1)+5=24+5=29, всё верно
Если ты прогроммист, как ты намекнул выше, то про https://en.wikipedia.org/wiki/Floor_and_ceiling_functions должен знать
219 84923
>>84921
так если мы округляем как написано в педии

> В математике, целая часть вещественного числа x до ближайшего целого в меньшую сторону.



то получается вообще
8(3 - 1) + 4, но я понял спасибо, буду искать celling на движке
cicada-png-jpg-8ruo8qc0dp.png48 Кб, 601x579
220 85179
Может кто подскажет?

Задавал недавно вопрос в соседнем треде:
>>85163 →

Анон >>85166 → посоветовал уточнить тут.

И в дополнение хотелось бы спросить, если бы я вдруг ебанулся и решил-таки перегенерить, хешировать по описанному в первом посте методу все 60^31 вариантов за пару миллиардов лет, чтобы узнать, сколько комбинаций в итоге получится - то каким ЯП мне стоило бы воспользоваться, какой бы наиболее быстро смог выполнять нужный алгоритм (офк с задействованием rtx 3090 в моем пека, а не процессора)?
Perl, C/C++, что-то другое?
Вдруг тут погромисты тоже есть.
IMG4333.JPG145 Кб, 1000x750
221 86377
Ананасосаны, может кто-нибудь из вас ебался с гпу/физикой? Короче есть одна непонятная хрень. У меня есть двумерный буфер из 9 клеток и он едет на гпу. В каждой клетке зашито направление(стрелка) и контент(кружок). Каждый раз клетка перемещает свой контент на ту клетку куда указывает направление. И при такой конфигурации стрелок на 4 фрейме контент куда-то пропадает. Подозреваю что есть какое-то физическое объяснение этого явления, можете меня ткнуть в этом направлении?
222 86567
>>75489 (OP)
Матаны, пиздец как срочно надо просчитать 10-ти триллионный знак числа пи. Есть вот такое вот: ru.wikipedia.org/wiki/Формула_Бэйли_—_Боруэйна_—_Плаффа
и там, внутри, 16k. Если k будет 10 триллионов, это ж ваще пиздец скоко умножений. Как оптимизировать оптимизацией оптимизациоаналистичной, чтобы алгоритмика вся эта няшная - сразу заалгоритмизировала всё алгоритмизациоанальностью, алгоритмической?
223 86568
>>86567
Блядь, тут https://en.wikipedia.org/wiki/Bailey–Borwein–Plouffe_formula
столько много букафф, а что значит k - нихуя не написано. Проясните, алгоритматаноны.
224 86569
>>86568
Прочитай статью целиком (особенно раздел BBP digit-extraction algorithm for π), а не только первые пару параграфов.
225 86573
>>86568

>а что значит k - нихуя не написано


Без комментариев.
image.png4 Кб, 283x51
226 86575
>>86573

>>а что значит k - нихуя не написано


>Без комментариев.


Действительно, там нет ваще никаких комментариев, про k.

Сама формула, как я понял, вычисляет пи целиком, а не эти вот знаки шестнадцатиричные.

>>86569

>Прочитай статью целиком (особенно раздел BBP digit-extraction algorithm for π),


>а не только первые пару параграфов.


Так там же (пикрил), тоже везде есть это ебучее и неведомое k,
а что оно значит и что туда подставлять надо - хрен поймёшь.
227 86576
>>86575
Это троллинг?
228 86577
>>86576
Нет, блять, не тролленк. Мне надо знать что значит это ёбанное "k",
и что туда пихать надо, чтобы махина эта завелась.
Что если нам надо срочно, высчитать ебический-космический 10-ти триллионный знак, блядь? Сидеть вычитывать что такое "k"? А где вычитывать, блядь, если нихуя инфу не дали, какую-то неполную хуйню намазюкали, а остальное скрыли и зацензурировали мочернёй, на мочане этом, мейлачевском?
229 86578
>>86577
И степень эту пиздатющую можно как-то через модуль заебенить? А то считать, блядь, 10^(в 10-ти триллионной) как-то, ну, мягко-сказать, что - пиздец как неэнергоэффективно.
230 86579
>>86577
Ты в первый раз суммирование видишь?
231 86580
>>86579
А, всё, понял, это ж сумма. k инкрементируется там от нуля. Так она аж до бесконечности штоле суммирует, блядь?
Это будет бесконечный цикол, штоле?

А хуле они тогда пиздят, эти пендосы, что прога даёт n-ный знак из пи, без вычисления предыдущих?
Если мне надо 10-ти триллионный hex-char оттуда, значит надо всё-равно просчитать это пи, с точностью до 10-ти триллионного знака, а потом извлечь цифру эту, так ведь?
232 86581
>>86580
По этому алгоритму видимо так. Если не походит, то другой ищи.
233 86582
>>86581
Какой алго годно считает, давай сюда его быстрее, и чем быстрее - тем лучше, потому что теперь, мне уже срочно нужен унтригинтиллионный знак числа пи, блядь, пиздец как нужно усираюсь прям. Меня тут в МГУ, уже на счетчик поставили прост.
234 86583
>>86580
>>86582
Таблетки?
image.png369 Кб, 640x464
235 86584
>>86583
Да не сижу я на таблетках, заебали, у меня петуховены спиздили, какие нахуй таблетки, заманали? Числа из пи извлекай давай мне, быстраблять.
236 86587
>>86575

>Так там же (пикрил), тоже везде есть это ебучее и неведомое k


>>86580

>А, всё, понял, это ж сумма. k инкрементируется там от нуля. Так она аж до бесконечности штоле суммирует, блядь?


Можно мне нобелевку, или там премию тысячелетия?
У меня пятсот косарей спиздили, мне лямчик не помешает.
Короче, зырьте, мне чет кажется что правую часть можно опустить, нахуй, где степень бинарная, потому что при k от 0 до n, пи уже рассчиталось с точностью до n-знаков. А то эта бесконечность ебическая, и ещё и степень там.
Тупо закомментировал код с этой частью уравнения, и всё вроде робит. Гоните бабала сюда, есличо. Адрес петухоина, сами знаете: 1KSRkvTQGgFkiwczwJpqgn8ZuSeHs8uVk9
Zanachka-1-BTC.jpg66 Кб, 500x486
237 86588
>>86587

>мне лямчик не помешает


Хоть мне стоко бабала нахуй и не надо, а то пузо треснет, но всё-равно пущай валяется где-нить на болванке, хуле. Оно жрать не просит, это говно петуховенское, которое пиздят постоянно всякие капиталистоблядские - крысы хуесосские.
238 86597
>>86567>>86568>>86575>>86577>>86580>>86582>>86587

>BBP


Вот тут BBP наварганил: https://gist.github.com/username1565/2ff957b29c6eae26207d5b7ac8af94f8
А тут консолька, онлайн: https://gistpreview.github.io/?2ff957b29c6eae26207d5b7ac8af94f8/BBP_NthHexDigitOfPI.html
Миллионную цифру долго считает, может можно было бы как-то и ускорить, я не знаю, но оставил коммент.
число пи.mp435 Мб, mp4,
854x480, 17:34
239 86598
>>86597
Раньше пи многогранниками и треугольниками паскаля считали.
240 86626
>>75489 (OP)
Каким алгоритмом рассчитать высокоточно - знаки числа Эйлера "e"?
И ещё один вопрос - вы уже нашли число Скьюза? https://ru.wikipedia.org/wiki/Число_Скьюза
Может мне заняться этой хуйнёй?
241 86627
>>86626
Всё, не надо, уже просчитал 10000 знаков.
Вот последние 50 из них:

>71039765214696027662583599051987042300179465536788



4 строчки кода на JavaScript, тупо копипастишь в консоль браузера и вот оно "e":

>var nDigs = 10000; var pad = Math.round(Math.log(nDigs)); var n = 1n;


>var f = 10n ٭٭ BigInt(nDigs + pad), e = BigInt(f) + BigInt(f);


>do e += (f /= ++n); while (f > n);


>console.log( '2.'+(e / (10n ٭٭ BigInt(pad))).toString().slice(1));



Звёздочки, конечно же - заменить на астерикс.
242 86630
>>86627
Осталось просчитать терь золотое сечение. Вижу здесь уже есть миллион цифор https://onlinemathtools.com/js/libs/golden-ratio-digits.js
а как их считать, блядь - хз. Как просчитаю, буду весь в золоте, и сечь его буду золотым сечением этим.
243 86632
>>86630
Ой бля, там корень считать надо, вавилонский метод виснет наглухо при 1000000-не цифр после запятой. Могу показать говнокод.
Может есть какой-нить попижже алго для вычисления корней, чтобы точно вот считало всё это?
244 86633
>>86632
Ну же, матаны?!!
Реквестирую же самый быстрый и эффективный способ рассчета квадратного корня, для длинных чисел!!

Как и чем рассчитали этот вот миллион десятичных чисел корня из двух: https://catonmat.net/tools/generate-sqrt2-digits
Вот тут они все: https://catonmat.net/js/tools/libs/sqrt2-digits.js

Сидели и ждали неделями, штоле?
245 86635
>>86633
мейби есть параллельные алогритмы, которые обсчитывают суперкомпьютеры
246 86642
>>86635
Пока пришёл лишь к двум методам - вавилонский метод, и метод Ньютона.

Оба, зависают при числе знаков в 10000.
Может можно всю эту хуйню как-то оптимизировать?
Вот код, в консоль браузера (JavaScript):

>function Sqrt( // Returns the square root of n, with decimal digits nDig


> n //number to compute square root


> , nDig //number of decimal digits in result


> , algo //Heron - for Babylonian method, or Newton for Newton Iteration method


>)


>{


> if (n < 0n) { throw 'square root of negative numbers is not supported' }


> if (n < 2n) { return n; }


> n = BigInt(n) (10n BigInt(nDig2)); //square have length nDig*2


> var x = (algo=='Heron') ? n : 1n, y = 1n;


> while (true) {


> if(algo === 'Heron'){


> if(x>y){ x = (x + y) / 2n; y = n / x; }


> else{ break; }


> }


> else if(algo === 'Newton'){


> y = ((n / x) + x) >> 1n;


> if (x === y || x === (y - 1n)) { break; }


> x = y;


> }


> }


> return x; //return BigInt


>}


>console.log(Sqrt(2, 1000, 'Heron' )); // -> 1000 decimal points of sqrt(2)


>console.log(Sqrt(2, 1000, 'Newton' )); // -> 1000 decimal points of sqrt(2)

246 86642
>>86635
Пока пришёл лишь к двум методам - вавилонский метод, и метод Ньютона.

Оба, зависают при числе знаков в 10000.
Может можно всю эту хуйню как-то оптимизировать?
Вот код, в консоль браузера (JavaScript):

>function Sqrt( // Returns the square root of n, with decimal digits nDig


> n //number to compute square root


> , nDig //number of decimal digits in result


> , algo //Heron - for Babylonian method, or Newton for Newton Iteration method


>)


>{


> if (n < 0n) { throw 'square root of negative numbers is not supported' }


> if (n < 2n) { return n; }


> n = BigInt(n) (10n BigInt(nDig2)); //square have length nDig*2


> var x = (algo=='Heron') ? n : 1n, y = 1n;


> while (true) {


> if(algo === 'Heron'){


> if(x>y){ x = (x + y) / 2n; y = n / x; }


> else{ break; }


> }


> else if(algo === 'Newton'){


> y = ((n / x) + x) >> 1n;


> if (x === y || x === (y - 1n)) { break; }


> x = y;


> }


> }


> return x; //return BigInt


>}


>console.log(Sqrt(2, 1000, 'Heron' )); // -> 1000 decimal points of sqrt(2)


>console.log(Sqrt(2, 1000, 'Newton' )); // -> 1000 decimal points of sqrt(2)

247 86643
>>86642
ёбанные звёздочки.
Где бубны, там - короче одна звёздочка

>function Sqrt( // Returns the square root of n, with decimal digits nDig


> n //number to compute square root


> , nDig //number of decimal digits in result


> , algo //Heron - for Babylonian method, or Newton for Newton Iteration method


>)


>{


> if (n < 0n) { throw 'square root of negative numbers is not supported' }


> if (n < 2n) { return n; }


> n = BigInt(n) ♦ (10n ♦♦ BigInt(nDig♦2)); //square have length nDig♦2


> var x = (algo=='Heron') ? n : 1n, y = 1n;


> while (true) {


> if(algo === 'Heron'){


> if(x>y){ x = (x + y) / 2n; y = n / x; }


> else{ break; }


> }


> else if(algo === 'Newton'){


> y = ((n / x) + x) >> 1n;


> if (x === y || x === (y - 1n)) { break; }


> x = y;


> }


> }


> return x; //return BigInt


>}


>console.log(Sqrt(2, 1000, 'Heron' )); // -> 1000 decimal points of sqrt(2)


>console.log(Sqrt(2, 1000, 'Newton' )); // -> 1000 decimal points of sqrt(2)

247 86643
>>86642
ёбанные звёздочки.
Где бубны, там - короче одна звёздочка

>function Sqrt( // Returns the square root of n, with decimal digits nDig


> n //number to compute square root


> , nDig //number of decimal digits in result


> , algo //Heron - for Babylonian method, or Newton for Newton Iteration method


>)


>{


> if (n < 0n) { throw 'square root of negative numbers is not supported' }


> if (n < 2n) { return n; }


> n = BigInt(n) ♦ (10n ♦♦ BigInt(nDig♦2)); //square have length nDig♦2


> var x = (algo=='Heron') ? n : 1n, y = 1n;


> while (true) {


> if(algo === 'Heron'){


> if(x>y){ x = (x + y) / 2n; y = n / x; }


> else{ break; }


> }


> else if(algo === 'Newton'){


> y = ((n / x) + x) >> 1n;


> if (x === y || x === (y - 1n)) { break; }


> x = y;


> }


> }


> return x; //return BigInt


>}


>console.log(Sqrt(2, 1000, 'Heron' )); // -> 1000 decimal points of sqrt(2)


>console.log(Sqrt(2, 1000, 'Newton' )); // -> 1000 decimal points of sqrt(2)

248 86644
>>86643
Вот, короче, оно тут: https://onecompiler.com/javascript/3x8py7xjf
Долго считает, сука, пиздатые числа.
Если 1 миллион цифр просчитывать,
то корень будет - пиздатое число,
порядка 1*10^1000000,
а квадрат - ещё пиздатее,
порядка 1^10^2000000,
поэтому надо бы, чё-то попижже понавыдумывать.
С другой стороны, какой метод последовательных приближений не возьми, всё-равно он будет сжирать по биту, из предпологаемого значения корня, длиной в 1000000 знаков,
а значит число итераций будет примерно равно:
root.bitlength если не больше, и оно растет, это число итераций, по мере наращивания числа вычисляемых цифр, блядь.
249 86645
>>86644
Вот запилил, пока черновой вариант (неоптимизированный),
тут корень считается - методом последовательных приближений,
за фиксированное число итераций цикла (это битовая длина корня log_2(10^N), где n - число цифр в корне): https://onecompiler.com/javascript/3x8qcnjtg

10к цифр этот говносайт не даёт просчитать, но в консоли (если скопировать код) можно просчитать эти корни ебучие,
но оно всё-равно долговато пашет,
надо оптимизировать бы, что-то там, но а как - хз.
Квадраты пиздатые, наверное, можно было бы powmod как-то считать, быстро, или каким-то бинарным возведением в степень,
или ещё чо.
Можно было бы складывать квадраты, или считать их без умножения, а сдвигом бинарным.

200 миллиардов знаков если считать - всё зависнет нахуй:

>Сигэру Кондо вычислил 200 миллиардов десятичных знаков после запятой в течение 13 дней и 14 часов, используя процессор с частотой 3,6 ГГц и 16 ГБ ОЗУ.

250 86653
>>86645
Вот, блядь, последовательные приближения: https://onecompiler.com/javascript/3x8rsccn9
Уже быстрее, за счет акселлерации побитовыми операциями.
251 86657
>>86653
Всё-равно медленно, блядь. Каждый бит корня пробегает, и столько же квадратов пиздатющих вычисляет.
Может прихуярить туда ещё и бинарный поиск, для пущей акселлерации? https://ru.wikipedia.org/wiki/Двоичный_поиск
Чтобы не все биты пробегать, а как-бы начиная с бита посередине.
Меньше квадратов бы должно вычисляться, тогда, в конечном итоге.
Если длинна корня лям-лярд, должно бы быстрее хуячить такое вот алго. Но это пока идея, и руки так и не дошли ещё чтоб вговнокодить всю эту хуйню.
252 86682
>>86657
Чёт подумалось бинарным поиском искать биты корня,
просто чтобы все биты не пробегать,
а то с к каждым битом, последовательные приближения, приближают значение корня на один бит.
Если бит дохуя, и число цифр в корне n, и корень порядка 10^n,
то алго будет срабатывать за log2(n) итераций,
потому что столько бит примерно в корне этом ебучем,
и это может быть дохуя.
Вон, челы миллиарды знаков считали. Представляете себе число 10 в степени 200 миллиардов, блядь? А сколько бит у него? Столько и итераций в цикле, и это дохуяшечки.

Я вижу здесь: https://ru.wikipedia.org/wiki/Квадратный_корень_из_2#Алгоритмы_вычисления
Есть какой-то алго пошустрее.
Он за один шаг, удваивает число цифр в корне, якобы.
Но мне кто нить пояснит, как работает это алго?
Откуда берутся эти дроби ебучие?!! Я уже и так, и сяк, не получаются нихуя дроби, а получается хуйня какая-то неведомая, с каждым шагом, которая даже на приближенный корень не похожа. Пиздец просто. А потом, каким-то магическим образом, всё это сходится в корне, опять же за log2(n) итераций. Пиздят википидоры, походу, но где и в чём - не пойму чёт. ПАМАГИИИИТИИ.
253 86683
>>86682
Всё ясно. Там любое число на входе може быть, как сторона прямоугольника, например, число 3, далёкое от корня.
И в любом случае итерации сходятся в корне.

Только здесь нашёл внятное описание: https://ru.wikipedia.org/wiki/Итерационная_формула_Герона#Геометрическая_интерпретация

>одну сторону нового прямоугольника сделаем равной среднему арифметическому обеих сторон предыдущего шага


поэтому, из-за среднего арифметического (xn/2) и не удивительно, что алго работает за log2(n), так как для корня битовой длины n, сжирается по биту за шаг, этим вот делением на два.
254 87231
Нет ли у вас ощущения, что математики бомбят на тараканов, потому что для тараканов кажутся элементарными модели, которые строят математики путём усиленного напряжения извилин, памяти и воображения, когда по сути это примитивные модели каких нибудь сфер или сеток, которые может не сильно напрягаясь написать и визуализировать на мониотре немного прокаченный школьник?
255 87232
>>87231
Нет.
256 87247
>>87231
Что ты хочешь сказать, математик не может нарисовать сферу?
257 87248
>>87231

Прежде чем пиздеть, ты гамалогии от тапалогий научился отличать?
258 87252
>>87231
Это очевидно по числу ответов ITT.
Местные маняматики даже не в состоянии врубиться о чем идёт речь в постах анона.
Наверное, тред про алго следовало бы создать в /pr или /s потому что математические абстракции здесь
слишком сложны для окостеневшего лба, среднестатистического маняматика из матача, на этом - мочерском мейлаче.
Ну а хейт погромистов в этом разделе, и всякий тараканизм - это уже стадная хуйня,
тут у них своя стадная иерархия в виде примитивной пирамидки, я гляжу.
259 87253
>>87252
Тебе норм?
260 87255
>>87252
Как же у кодерка нибамбит от того, что его хуйня никому кроме узкой кучки таких же аутистов не интересна. Да-да, про матешу можно сказать то же самое
261 87259
>>87253
Пошёл нахуй. Там на модедях ваших ебучих, где слежка непрактичная, блядь, прекрасно видно, крысинные черви, как мне здесь норм.
262 87260
>>87253
500 косарей пендосской срани мои, мне сюда, ещё вчера. И коробку шмали мне мою отдайте ещё, дешёвая крысинная гниль. Да, я не за был, сука. Ничтожества никчёмные.
263 87261
>>87259
-----BEGIN BITCOIN SIGNED MESSAGE-----
console.log(new Date().getTime()); //1631323200242

Я принёс вам 11 сентября в говнявесном блохчейне: https://wavesblockexplorer.com/tx/72ses9JqiJ7BAvjaAJbBAB4hgT9g6dUycvjmy4uU7bAB
Всосите его сполна, суккакрысы.
Сегодня годовщина, кстати. Ровно 20 лет.
Хуй вы удалите это, теперь, мрази мочерские.
-----BEGIN SIGNATURE-----
1QGmrMkWAwpauFRMUq9Y9mK34e7uoc7ge5
HAHRcIOg34XJx++hfSEocxWGiTJbiKT3WH5JCZSw1QGeGft0RCCFHyLsADoIj4HHifHlz3wnGoaEh81NL6mkVek=
-----END BITCOIN SIGNED MESSAGE-----
264 87265
>>87252

>Наверное, тред про алго следовало бы создать в /pr или /s потому что


хотя и не могу согласиться с аргументацией, тезис полностью поддерживаю
265 87266
>>87265
К сожалению ты не прав. Раздел /pr следовало бы создать тредом в разделе /math
266 87267
>>87266
Ты не прав. Тараканы не нужны математикам
267 87268
>>87267
Математика загибается, прорывов следует ждать в тараканьих науках от молодых тараканов
268 87269
>>87268
Тараканьи мантры
269 87270
>>87268
Да б-га ради. Почему бы вам не наныть свою доску по комплюхтер саенс и обсуждать там алгоритмы, нейронки и прочее? Матх то тут при чем.
270 87271
271 87272
>>87270
Если отсюда погромисты уйдут, скорость постинга раза в три ведь уменьшится, а доска и так полуживая.
272 87276
>>87271
У меня диссонанс.
Я всегда считал что существуют хитромудровыпиханные алго, позволяющие подобрать хэшируемые данные по хэшу,
с той же скоростью, с которой проверяется хэш.
Например, квантовыми вычислениями какими-то невъебенными, или обратимыми вычислениями.
Когда хэшируешь данные - инфа теряется из-за необратимости конъюнкций и дизъюнкций всяких.
А если делать это через обратимые вычисления, не теряя инфу, то по выходной инфе можно однозначно восстановить входную,
так же быстро, как вычисляется входная инфа (хэш), но только в другую сторону (обратимость обратимых вычислений).
273 87278
>>87272
Лучше тишина, чем мусор, ясчитаю
274 87280
>>87272
Почему кого-то должна волновать скорость постинга?
275 87307
А правильно ли я понимаю, что если мы прибавляем к любому простому числу 10, то остаток от деления на 10 это наше простое число? То есть можно сделать тип, основываясь на каком-либо простом числе?
276 87308
>>87307
(41+10)%10=1
277 87309
>>87308
а спасибо, простое должно быть меньше 10, то есть чем большее мы возьмём число вместо 10, тем более разнообразен будет у нас выбор простых?
278 87313
>>87307
>>87309
ты ведь понимаешь, что в $(k+n) \mod n \equiv k \mod n \equiv k$ может стоять любое натуральное число n, не только 10 в какой-нибудь степени, и что утверждение будет выполняться для любого натурального k<n, простые числа тут вообще ни к чему?
videoplayback.mp47,7 Мб, mp4,
640x360, 1:59
279 87371
280 87461
>>75489 (OP)

>оппик


>определение алгоритма


>теория вычислимости? нет, не слышали

281 87463
>>87461
Это презентация, видимо, для младших классов средней школы. Предлагаешь им рассказывать про тезис Черча?
282 87469
>>87463
Предлагаю им сказать: алгоритм сложная вещь, поэтому вообще дать ему определение нельзя. Но если очень упростить, то вот:
283 87480
>>87469

>Но если очень упростить, то вот: (|), Є====3, (_Y_), .|. , (. Y .), (_8_), (_O_), :=O===3 , 8====D

284 87482
>>87480
Какой-то эзотерический язык программирования получается.
285 87706
>>87480

Помню когда был мелким спермотоксикозником, то в кс 1.6, когда кто-то рисова (_о_) у меня хуй вставал.
286 87710
>>87706
А теперь у меня хуй только на такое встаёт, о чём вслух произнести стрёмно. А всё остальное уже никакой реакции не вызывает
287 87712
>>87710
Лизни ( Y ) , заебал.
288 87713
>>87712
Вообще никакой реакции, вот правда
289 87714
>>87713
А так? ( \|/ )
290 87742
>>75489 (OP)
Вопрос: можно ли всякий алгоритм представить в качества конечного автомата? Речь идет об алгоритмах постоянно повторяющихся действий
291 87746
>>87742
Алгоритм, который бесконечно заполняет память, нельзя представить конечным автоматом.
292 87777
>>87746
А бесконечным автоматом? Это такой автомат, который всегда тра-та-та-та-та, и в котором никогда не кончаются патроны.
293 88311
>>87746
Почему нельзя, просто циклом запрашивается память у операционной системы и забивается мусором. Многие программы на C/C++ написаны именно так - с утечками памяти. Программисты выделяют память, что-то туда пишут, а освободить забывают.
294 88315
>>88311
Так память же конечная.
295 88316
>>88315
Она только у тебя конечная, а у нас уже бесконечная есть.
296 88317
>>88315
Да, всё правильно. Конечна даже не сама память, а адресное пространство. Поэтому либо комп зависнет, либо операционная система завершит процесс.
8B3D598B-ABC5-4F8F-AD18-9D43F03C842A.jpeg596 Кб, 1620x1933
297 91950
298 93512
Год сюда не заглядывал, чё-то крутился с работой, но вот опять появилось время для глобального саморазвития. Так вот товарищи, читаю сейчас одну книгу по програмированию. Это самая жёсткая книга, которую я читал, хотя в отзывах на Амазоне пишут что это изи реадинг, пиздец конечно там зубры сидят бородатые. Первые 11 страниц я натурально читаю уже 2 года. Там обсасывается египетское умножение и то как это перенести на комплютер. У меня там буквально на каждом предложении кипит мозг. Но с горем пополам я вроде понял больше половины первой главы и иду дальше. И вот какую вещь после неё я заметил. Допустим возьмём любую степень двойки. Если мы от неё отнимем единицу то получится нечётное число, и без остатка оно не делится. Но если мы всё таки 'разделим' это число на два числа, то одно из них обязательно будет простое? Например число (16 - 1) / 2 = 8 + 7, (32 - 1) / 2 = 15 + 16 ...
299 93514
>>93512
блеять понял уже что хуйню сказал. 15 это составное число, тогда вопрос такой: то одно число обязательно будет не чётным а второе чётным
300 93515
>>93514
И если мы продолжим 'делить' это первое нечётное число, то мы никогда не получим два чётных числа
(64 - 1) / 2 = 32 + 31
31 / 2 = 16 + 15
15 / 2 = 14 + 7
7 / 2 = 4 + 3
То есть получается какой-то постоянно повторяющийся плохой случай, а всего лишь надо было от степени двойки отнять единицу
301 93516
>>93512
Что ты какой-то хуйнёй занимаешься, как мне кажется. Вот норм лекции, попробуй посмотреть https://www.youtube.com/watch?v=KdZ4HF1SrFs&list=PLRDzFCPr95fK7tr47883DFUbm4GeOjjc0
302 93521
>>93515
https://ru.wikipedia.org/wiki/Целая_часть
Ты по сути просто обнаружил, что $\lceil x/2 \rceil + \lfloor x/2 \rfloor = x$, где $x$ целое число. Если $x$ четное, то $\lceil x/2 \rceil = \lfloor x/2 \rfloor$, если нечетное, то $\lceil x/2 \rceil = \lfloor x/2 \rfloor + 1$.
303 93522
>>93521

>⌈x/2⌉=⌊x/2⌋


>⌈x/2⌉=⌊x/2⌋+1


Это отдельный пиздец. Как так? Там были эти формулы, но я не понимаю, как одно и то же действие равняется двум разным результатам?
304 93689
>>75489 (OP)
Всё, что ни на есть - это алгоритмы. Даже если нихуя не исполняется, а просто если что-то существует, то что-то существует во времени, и переходит из одного состоиния в другое, с каждым новым интервалом планковского времени - как-бы исполняя алгоритм. Процесс развития Вселенной - это тоже один пиздатый алгоритм, который пиздует во времени.
А поскольку везде алго, и Вселенная - это сплошной алго, то алго фундаментален, и если познать дзен в сути алго, и алгоритмизировать алгоритмизацию алгоритмическую, то алгоритмически алгоритмизирующая алгоритмизация, заалгоритмирует алгоритмом алгоритмизирующим.
305 93700
>>93689
ну типа того.. например бинарный поиск имеет ту же самую природу что и простые числа. Это естественная природная конструкция
306 93759
>>93700
А разве при бинарном поиске рассчитываются простые числа?
Можно ли присунуть в алго массив заранее вычисленных простых чисел и ускорить бинарный поиск?
307 94222
>>93700
Что у тебя там? Простые числа? Держи алгоритм миллера-рабина: https://username1565.github.io/BigInteger.js/Miller-Rabin_test.html
308 94254
>>94222
А чем сито Эрастофена не устраивает?
309 94260
>>94254
А оно заебётся такие пиздатющие числа на простоту чекать, и зависнет нахуй.
310 94639
>>75566
нет конечно, это же не имеет смысла, какой прок от алгоритма если мы не можем его осмыслить нашим конечным мозгом. Другое дело, что алгоритмы вполне могут выдавать бесконечные данные, типа алгоритма для числа пи.
311 94641
>>93689
все так аминь
312 94654
Есть какие-нибудь олимпиадные задачи, которые можно решать разными способами с возможностью увеличения эффективности решения?
313 94676
>>94654
Ты про олимпиадное программирование?
314 94680
>>94676
В принципе, да, но можно было и более бытовое что-то, ведь там, в основном, любят давить на сортировки.
315 94681
>>94680
И ты спрашиваешь, есть ли оно. Ну да, есть. Куча сайтов с задачами, где можно решение отослать и его по тестам прогонят. И не только на сортировку. Или ты что-то иное имеешь в виду.
image.png71 Кб, 800x600
316 94682
Есть практическая задача, не могу ее эффективно решить.
Двухмерное пространство, есть два класса зон: разрешающие и запрещающие. Могут быть окружностью либо полигоном (выпуклым, пока). Задача - найти близжайшую окружность, которая будет полностью в допустимой зоне, при этом не будет пересекаться с запрещающими зонами, т.е. для точки в центре - одна из двух фиолетовых.

Изначально, задача была про точку, я ее решал перебором: начиная от тестовой радиуса 0.5 (вокруг изначальной точки), перебрать точки на окружности с шагом 0.5, если попадает в разрешающие и не попадает в запрещающие - ок. В итоге оказалось низкопроизводительным, хоть и работало. Потом оказалось что есть погрешность - поэтому нужно искать не точку, а целую окружность. В теории - можно сделать то же самое, только смотреть не попадание тестовой точки в зоны, а пересечение окружности с этими зонами. Все равно выглядит как дилетанство, тем более на практике такого количества фигур не будет и перебор сильно замедляет алгоритм.
Мб кто подскажет более эффективный способ? На питоне написано, мб либа есть?
317 94698
>>94681

>Или ты что-то иное имеешь в виду.


Что-то, по мнению возможных ответчиков, интересное. Например, вывод специфических перестановок или подсчёт маршрутов с погрешностями, возможные задачи на приближённое моделирование без теории из численных методов.
318 95704
>>94682
Пчел, задача у тебя невыпуклая, это пиздец с точки зрения именно матеши, так что сетка это идеальный алгоритм для глобальной оптимизации. Можешь разве что увеличить шаг сетки и прикрутить градиентный спуск, его и сам написать можешь. Как еще один прикол - вместо того, чтоб решать задачу с ограничениями, просто наебни функцию штрафа, по типу $f(x) = ||x||^{2} + \betha \sum_{i} (\min(0, \rho_{i}(x) - r))^{2}$, где $\pho$ - знаковые функции расстояния до фигур.
319 95705
>>95704
Пиздец я в техе обосрался, но вроде все и так понятно.
320 95850
>>95704
Двачую сетка. Можно на ГПУ наебенить
321 96386
У меня задача, нужно график функции масштабировать и компенсировать смещение точки под курсором при масштабировании. Какой алгоритм мне использовать? я использую алгоритм следующий: [mаth]сдвиг графика по оси Х += (координаты мыши масштаб графика) - (координаты мыши новый масштаб графика) [/mаth]
322 96387
>>96386
$ сдвиг графика по оси Х += (координаты мыши масштаб графика) - (координаты мыши новый масштаб графика) $
323 96388
>>96387
какая то поебень у вас тут
﹩сдвиг графика по оси Х += (координаты мыши масштаб графика) - (координаты мыши новый масштаб графика)﹩
324 96409
>>96386
>>96387
>>96388
Все разобрался, полторы недели мучался, оказывается нужно было умножать на масштаб разницу координат. Методом тыка подобрал алгоритм.
image.png1,1 Мб, 1200x759
325 103354
Почему Тьюринг не пронумеровал клетки ленты своей машины, а разрешил только ползать по ней влево/вправо?
326 103627
>>103354
Потому что ты не знаешь разницы между машиной Тьюринга и универсальной машиной Тьюринга. Если бы знал, то знал бы и то, что последняя - это общий формализм универсального вычислителя, поэтому любая конкретная нумерация ячеек ленты не имеет смысла.
327 103689
>>75489 (OP)
Как оптимизировать самостоятельное изучение алгоритмов. неироничный вопрос
328 103693
>>103627
Если бы была возможность не ползать по ленте влево вправо, а сразу прыгнуть на ячейку с конкретным номером, то вычислитель перестал бы быть универсальным?
329 103697
>>103354
Тогда пришлось бы добавить возможность записывать произвольные числа в ячейку вместо конечного алфавита.
330 103705
>>103693

>Если бы была возможность не ползать по ленте влево вправо, а сразу прыгнуть на ячейку с конкретным номером, то вычислитель перестал бы быть универсальным?


Нет конечно же. Описанная тобой возможность изначально предполагает конкретную нумерацию ячеек, отсюда возможность перейти к любой ячейке, нумерация которой вычислима в данной программе. В чем и суть, можно задать любую нумерацию ячеек, вычислимую в заданной программе, а не ограничиваться заранее заданной. Это одна из причин, почему универсальная машина Тьюринга это именно общий формализм любого возможного вычислителя.
331 103713
>>103627

> Потому что ты не знаешь разницы между машиной Тьюринга и универсальной машиной Тьюринга.



Слово "разница" в данном контексте как-то нелепо звучит. Какая, например, "разница" между множеством всех натуральных чисел и числом 1?

Вот так и тут... Понятно, что универсальная машина Тьюринга - это конкретный пример машины Тьюринга. Но говорить о РАЗНИЦЕ между конкретным примером какого-то объекта и множеством всех этих объектов - это как-то странно, мягко говоря.

Или ты нам хочешь сказать, что универсальная машина Тьюринга - это не машина Тьюринга?
332 103714
>>103713

>Какая, например, "разница" между множеством всех натуральных чисел и числом 1?


Что-то из этого является наименьшим индуктивным множеством содержащим 1, другое - нет. При определенном формализме теории множеств, одно является множеством, а другое - нет.

>Но говорить о РАЗНИЦЕ между конкретным примером какого-то объекта и множеством всех этих объектов - это как-то странно, мягко говоря.


Число 1 это не множество натуральных чисел, красное яблоко это не множество красных яблок (если только ты не готов отождествлять синглетоны с их единственными элементами). Раз решил до слова доебаться, то хоть бы аналогии нормальные придумал.
Но я понимаю о чем ты. Посмотрим на вопрос "есть ли смысл говорить о РАЗНИЦЕ между абстрактной группой и группой симметрий конкретного множества?". Очевиднейший для любого нормального человека ответ - имеет, как минимум потому что у нас есть теорема их нетривиальным образом связывающая и одно с другим путать нельзя.
мимо
333 103715
>>103713

>универсальная машина Тьюринга - это конкретный пример машины Тьюринга.


Вообще-то, наоборот. Универсальная машина Тьюринга это общий формализм, а не конкретный пример.

>говорить о РАЗНИЦЕ между конкретным примером какого-то объекта и множеством всех этих объектов - это как-то странно, мягко говоря.


То есть, ты не видишь разницы между например, аксиомами группы, и конкретной группой?
334 103716
>>103715

> Универсальная машина Тьюринга это общий формализм, а не конкретный пример.


О, вот это уже интересно. А если всю эту филологическую воду опустить, сможешь хотя бы примерно накидать твои определения машины Тьюринга и универсальной МТ?
Уже предвкушаю смешное чтиво.

> То есть, ты не видишь


Я этого не утверждал. Я лишь сказал, что странно говорить разнице объектов, которые уже на уровне типизации различаются. Давайте ещё обсудим, чем отлицается цвет от красного и вкус от горького.
335 103717
>>103716

>сможешь хотя бы примерно накидать твои определения машины Тьюринга и универсальной МТ?


"Мои" определения не отличаются от общепринятых.

>странно говорить разнице объектов, которые уже на уровне типизации различаются.


Надо же, про типизацию знаешь, ты у бабушки молодец? В таком случае, ответ на твой изначальный вопрос
>>103354 можно упростить до одного слова - полиморфизм.
336 103718
>>103717

> "Мои" определения не отличаются от общепринятых.


В таком случае ты противоречишь сам себе. Не забывай пить таблетки.
337 103732
>>103697
Почему бы не записать в ячейку произвольное число, она же не ограничена определенным числом битов, как ячейка памяти компьютера? Для произвольного числа все еще нужен конечный алфавит.
338 103739
>>103732
Как раз потому что компьютер так не может, а мы его моделируем. Вообще цель в том чтобы определить минимально возможную модель вычислителя, а не городить в нее удобств. Таблица переходов тоже тогда должна быть бесконечной.
339 103750
>>75489 (OP)
У меня есть такая задача:
Пусть $X=\{1,...,n\}$, дана метрика $d$ в $X$ и функция $\omega: X^2 \rightarrow N_0$. Нужно определяя пермутацию(биекцию) $\sigma: X \rightarrow X$, нужно минимизировать $F(\sigma)=\sum_{(i,j)\in X^2}\omega(i,j)d(\sigma(i), \sigma(j))$

Если у вас есть хорошие идеи для алгоритма решения, то будет здорово, но у меня есть более конкретный вопрос.

Если я начну с произвольной пермутации $\sigma_0$ и определю $\sigma_i = argmax_{\sigma \in \{t \circ \sigma_{i-1}: t\in T\}}F(\sigma)$, где $T$ это множество транспозиций, то какое максимальное число итераций(можно через нотацию $O$) требуется для схождения алгоритма?
340 103761
>>103750
Почкольку твоя омега произвольная, никакой возможности воспользоваться остальной информацией особым способом не предвидится, так что давай чисто перебором. O(n^2)
341 103764
>>103761
Проигрываю с чуханов не могущих в O нотацию.
342 103767
>>103761
Чистый перебор это же n!
343 103770
>>103767
ну да, сорри
я действительно плох в O нотации для переборов
344 103772
>>103770
Так тут даже О нотация не нужна.
345 103774
>>103772
он же сам ее попросил
346 103776
>>103774
Я конкретно про этот случай.
347 106262
Вы знаете какую-нибудь книгу по алгоритмам, где в качестве задач - ссылки на задачи с литкода/других тестирующих систем?
То, что я наблюдаю в самых популярных книгах - это какое-то позорище. Тестирующие системы существуют уже не менее 20 лет, а они как писали задачи на бумажке, так и продолжают, блять.
Обновить тред
Двач.hk не отвечает.
Вы видите копию треда, сохраненную 13 сентября в 03:26.

Скачать тред: только с превью, с превью и прикрепленными файлами.
Второй вариант может долго скачиваться. Файлы будут только в живых или недавно утонувших тредах. Подробнее

Если вам полезен архив М.Двача, пожертвуйте на оплату сервера.
« /math/В начало тредаВеб-версияНастройки
/a//b//mu//s//vg/Все доски